Logo Search packages:      
Sourcecode: lapack3 version File versions  Download package

clatmr.f

      SUBROUTINE CLATMR( M, N, DIST, ISEED, SYM, D, MODE, COND, DMAX,
     $                   RSIGN, GRADE, DL, MODEL, CONDL, DR, MODER,
     $                   CONDR, PIVTNG, IPIVOT, KL, KU, SPARSE, ANORM,
     $                   PACK, A, LDA, IWORK, INFO )
*
*  -- LAPACK test routine (version 3.0) --
*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
*     Courant Institute, Argonne National Lab, and Rice University
*     February 29, 1992
*
*     .. Scalar Arguments ..
      CHARACTER          DIST, GRADE, PACK, PIVTNG, RSIGN, SYM
      INTEGER            INFO, KL, KU, LDA, M, MODE, MODEL, MODER, N
      REAL               ANORM, COND, CONDL, CONDR, SPARSE
      COMPLEX            DMAX
*     ..
*     .. Array Arguments ..
      INTEGER            IPIVOT( * ), ISEED( 4 ), IWORK( * )
      COMPLEX            A( LDA, * ), D( * ), DL( * ), DR( * )
*     ..
*
*  Purpose
*  =======
*
*     CLATMR generates random matrices of various types for testing
*     LAPACK programs.
*
*     CLATMR operates by applying the following sequence of
*     operations:
*
*       Generate a matrix A with random entries of distribution DIST
*          which is symmetric if SYM='S', Hermitian if SYM='H', and
*          nonsymmetric if SYM='N'.
*
*       Set the diagonal to D, where D may be input or
*          computed according to MODE, COND, DMAX and RSIGN
*          as described below.
*
*       Grade the matrix, if desired, from the left and/or right
*          as specified by GRADE. The inputs DL, MODEL, CONDL, DR,
*          MODER and CONDR also determine the grading as described
*          below.
*
*       Permute, if desired, the rows and/or columns as specified by
*          PIVTNG and IPIVOT.
*
*       Set random entries to zero, if desired, to get a random sparse
*          matrix as specified by SPARSE.
*
*       Make A a band matrix, if desired, by zeroing out the matrix
*          outside a band of lower bandwidth KL and upper bandwidth KU.
*
*       Scale A, if desired, to have maximum entry ANORM.
*
*       Pack the matrix if desired. Options specified by PACK are:
*          no packing
*          zero out upper half (if symmetric or Hermitian)
*          zero out lower half (if symmetric or Hermitian)
*          store the upper half columnwise (if symmetric or Hermitian
*              or square upper triangular)
*          store the lower half columnwise (if symmetric or Hermitian
*              or square lower triangular)
*              same as upper half rowwise if symmetric
*              same as conjugate upper half rowwise if Hermitian
*          store the lower triangle in banded format
*              (if symmetric or Hermitian)
*          store the upper triangle in banded format
*              (if symmetric or Hermitian)
*          store the entire matrix in banded format
*
*     Note: If two calls to CLATMR differ only in the PACK parameter,
*           they will generate mathematically equivalent matrices.
*
*           If two calls to CLATMR both have full bandwidth (KL = M-1
*           and KU = N-1), and differ only in the PIVTNG and PACK
*           parameters, then the matrices generated will differ only
*           in the order of the rows and/or columns, and otherwise
*           contain the same data. This consistency cannot be and
*           is not maintained with less than full bandwidth.
*
*  Arguments
*  =========
*
*  M      - INTEGER
*           Number of rows of A. Not modified.
*
*  N      - INTEGER
*           Number of columns of A. Not modified.
*
*  DIST   - CHARACTER*1
*           On entry, DIST specifies the type of distribution to be used
*           to generate a random matrix .
*           'U' => real and imaginary parts are independent
*                  UNIFORM( 0, 1 )  ( 'U' for uniform )
*           'S' => real and imaginary parts are independent
*                  UNIFORM( -1, 1 ) ( 'S' for symmetric )
*           'N' => real and imaginary parts are independent
*                  NORMAL( 0, 1 )   ( 'N' for normal )
*           'D' => uniform on interior of unit disk ( 'D' for disk )
*           Not modified.
*
*  ISEED  - INTEGER array, dimension (4)
*           On entry ISEED specifies the seed of the random number
*           generator. They should lie between 0 and 4095 inclusive,
*           and ISEED(4) should be odd. The random number generator
*           uses a linear congruential sequence limited to small
*           integers, and so should produce machine independent
*           random numbers. The values of ISEED are changed on
*           exit, and can be used in the next call to CLATMR
*           to continue the same random number sequence.
*           Changed on exit.
*
*  SYM    - CHARACTER*1
*           If SYM='S', generated matrix is symmetric.
*           If SYM='H', generated matrix is Hermitian.
*           If SYM='N', generated matrix is nonsymmetric.
*           Not modified.
*
*  D      - COMPLEX array, dimension (min(M,N))
*           On entry this array specifies the diagonal entries
*           of the diagonal of A.  D may either be specified
*           on entry, or set according to MODE and COND as described
*           below. If the matrix is Hermitian, the real part of D
*           will be taken. May be changed on exit if MODE is nonzero.
*
*  MODE   - INTEGER
*           On entry describes how D is to be used:
*           MODE = 0 means use D as input
*           MODE = 1 sets D(1)=1 and D(2:N)=1.0/COND
*           MODE = 2 sets D(1:N-1)=1 and D(N)=1.0/COND
*           MODE = 3 sets D(I)=COND**(-(I-1)/(N-1))
*           MODE = 4 sets D(i)=1 - (i-1)/(N-1)*(1 - 1/COND)
*           MODE = 5 sets D to random numbers in the range
*                    ( 1/COND , 1 ) such that their logarithms
*                    are uniformly distributed.
*           MODE = 6 set D to random numbers from same distribution
*                    as the rest of the matrix.
*           MODE < 0 has the same meaning as ABS(MODE), except that
*              the order of the elements of D is reversed.
*           Thus if MODE is positive, D has entries ranging from
*              1 to 1/COND, if negative, from 1/COND to 1,
*           Not modified.
*
*  COND   - REAL
*           On entry, used as described under MODE above.
*           If used, it must be >= 1. Not modified.
*
*  DMAX   - COMPLEX
*           If MODE neither -6, 0 nor 6, the diagonal is scaled by
*           DMAX / max(abs(D(i))), so that maximum absolute entry
*           of diagonal is abs(DMAX). If DMAX is complex (or zero),
*           diagonal will be scaled by a complex number (or zero).
*
*  RSIGN  - CHARACTER*1
*           If MODE neither -6, 0 nor 6, specifies sign of diagonal
*           as follows:
*           'T' => diagonal entries are multiplied by a random complex
*                  number uniformly distributed with absolute value 1
*           'F' => diagonal unchanged
*           Not modified.
*
*  GRADE  - CHARACTER*1
*           Specifies grading of matrix as follows:
*           'N'  => no grading
*           'L'  => matrix premultiplied by diag( DL )
*                   (only if matrix nonsymmetric)
*           'R'  => matrix postmultiplied by diag( DR )
*                   (only if matrix nonsymmetric)
*           'B'  => matrix premultiplied by diag( DL ) and
*                         postmultiplied by diag( DR )
*                   (only if matrix nonsymmetric)
*           'H'  => matrix premultiplied by diag( DL ) and
*                         postmultiplied by diag( CONJG(DL) )
*                   (only if matrix Hermitian or nonsymmetric)
*           'S'  => matrix premultiplied by diag( DL ) and
*                         postmultiplied by diag( DL )
*                   (only if matrix symmetric or nonsymmetric)
*           'E'  => matrix premultiplied by diag( DL ) and
*                         postmultiplied by inv( diag( DL ) )
*                         ( 'S' for similarity )
*                   (only if matrix nonsymmetric)
*                   Note: if GRADE='S', then M must equal N.
*           Not modified.
*
*  DL     - COMPLEX array, dimension (M)
*           If MODEL=0, then on entry this array specifies the diagonal
*           entries of a diagonal matrix used as described under GRADE
*           above. If MODEL is not zero, then DL will be set according
*           to MODEL and CONDL, analogous to the way D is set according
*           to MODE and COND (except there is no DMAX parameter for DL).
*           If GRADE='E', then DL cannot have zero entries.
*           Not referenced if GRADE = 'N' or 'R'. Changed on exit.
*
*  MODEL  - INTEGER
*           This specifies how the diagonal array DL is to be computed,
*           just as MODE specifies how D is to be computed.
*           Not modified.
*
*  CONDL  - REAL
*           When MODEL is not zero, this specifies the condition number
*           of the computed DL.  Not modified.
*
*  DR     - COMPLEX array, dimension (N)
*           If MODER=0, then on entry this array specifies the diagonal
*           entries of a diagonal matrix used as described under GRADE
*           above. If MODER is not zero, then DR will be set according
*           to MODER and CONDR, analogous to the way D is set according
*           to MODE and COND (except there is no DMAX parameter for DR).
*           Not referenced if GRADE = 'N', 'L', 'H' or 'S'.
*           Changed on exit.
*
*  MODER  - INTEGER
*           This specifies how the diagonal array DR is to be computed,
*           just as MODE specifies how D is to be computed.
*           Not modified.
*
*  CONDR  - REAL
*           When MODER is not zero, this specifies the condition number
*           of the computed DR.  Not modified.
*
*  PIVTNG - CHARACTER*1
*           On entry specifies pivoting permutations as follows:
*           'N' or ' ' => none.
*           'L' => left or row pivoting (matrix must be nonsymmetric).
*           'R' => right or column pivoting (matrix must be
*                  nonsymmetric).
*           'B' or 'F' => both or full pivoting, i.e., on both sides.
*                         In this case, M must equal N
*
*           If two calls to CLATMR both have full bandwidth (KL = M-1
*           and KU = N-1), and differ only in the PIVTNG and PACK
*           parameters, then the matrices generated will differ only
*           in the order of the rows and/or columns, and otherwise
*           contain the same data. This consistency cannot be
*           maintained with less than full bandwidth.
*
*  IPIVOT - INTEGER array, dimension (N or M)
*           This array specifies the permutation used.  After the
*           basic matrix is generated, the rows, columns, or both
*           are permuted.   If, say, row pivoting is selected, CLATMR
*           starts with the *last* row and interchanges the M-th and
*           IPIVOT(M)-th rows, then moves to the next-to-last row,
*           interchanging the (M-1)-th and the IPIVOT(M-1)-th rows,
*           and so on.  In terms of "2-cycles", the permutation is
*           (1 IPIVOT(1)) (2 IPIVOT(2)) ... (M IPIVOT(M))
*           where the rightmost cycle is applied first.  This is the
*           *inverse* of the effect of pivoting in LINPACK.  The idea
*           is that factoring (with pivoting) an identity matrix
*           which has been inverse-pivoted in this way should
*           result in a pivot vector identical to IPIVOT.
*           Not referenced if PIVTNG = 'N'. Not modified.
*
*  SPARSE - REAL
*           On entry specifies the sparsity of the matrix if a sparse
*           matrix is to be generated. SPARSE should lie between
*           0 and 1. To generate a sparse matrix, for each matrix entry
*           a uniform ( 0, 1 ) random number x is generated and
*           compared to SPARSE; if x is larger the matrix entry
*           is unchanged and if x is smaller the entry is set
*           to zero. Thus on the average a fraction SPARSE of the
*           entries will be set to zero.
*           Not modified.
*
*  KL     - INTEGER
*           On entry specifies the lower bandwidth of the  matrix. For
*           example, KL=0 implies upper triangular, KL=1 implies upper
*           Hessenberg, and KL at least M-1 implies the matrix is not
*           banded. Must equal KU if matrix is symmetric or Hermitian.
*           Not modified.
*
*  KU     - INTEGER
*           On entry specifies the upper bandwidth of the  matrix. For
*           example, KU=0 implies lower triangular, KU=1 implies lower
*           Hessenberg, and KU at least N-1 implies the matrix is not
*           banded. Must equal KL if matrix is symmetric or Hermitian.
*           Not modified.
*
*  ANORM  - REAL
*           On entry specifies maximum entry of output matrix
*           (output matrix will by multiplied by a constant so that
*           its largest absolute entry equal ANORM)
*           if ANORM is nonnegative. If ANORM is negative no scaling
*           is done. Not modified.
*
*  PACK   - CHARACTER*1
*           On entry specifies packing of matrix as follows:
*           'N' => no packing
*           'U' => zero out all subdiagonal entries
*                  (if symmetric or Hermitian)
*           'L' => zero out all superdiagonal entries
*                  (if symmetric or Hermitian)
*           'C' => store the upper triangle columnwise
*                  (only if matrix symmetric or Hermitian or
*                   square upper triangular)
*           'R' => store the lower triangle columnwise
*                  (only if matrix symmetric or Hermitian or
*                   square lower triangular)
*                  (same as upper half rowwise if symmetric)
*                  (same as conjugate upper half rowwise if Hermitian)
*           'B' => store the lower triangle in band storage scheme
*                  (only if matrix symmetric or Hermitian)
*           'Q' => store the upper triangle in band storage scheme
*                  (only if matrix symmetric or Hermitian)
*           'Z' => store the entire matrix in band storage scheme
*                      (pivoting can be provided for by using this
*                      option to store A in the trailing rows of
*                      the allocated storage)
*
*           Using these options, the various LAPACK packed and banded
*           storage schemes can be obtained:
*           GB               - use 'Z'
*           PB, HB or TB     - use 'B' or 'Q'
*           PP, HP or TP     - use 'C' or 'R'
*
*           If two calls to CLATMR differ only in the PACK parameter,
*           they will generate mathematically equivalent matrices.
*           Not modified.
*
*  A      - COMPLEX array, dimension (LDA,N)
*           On exit A is the desired test matrix. Only those
*           entries of A which are significant on output
*           will be referenced (even if A is in packed or band
*           storage format). The 'unoccupied corners' of A in
*           band format will be zeroed out.
*
*  LDA    - INTEGER
*           on entry LDA specifies the first dimension of A as
*           declared in the calling program.
*           If PACK='N', 'U' or 'L', LDA must be at least max ( 1, M ).
*           If PACK='C' or 'R', LDA must be at least 1.
*           If PACK='B', or 'Q', LDA must be MIN ( KU+1, N )
*           If PACK='Z', LDA must be at least KUU+KLL+1, where
*           KUU = MIN ( KU, N-1 ) and KLL = MIN ( KL, N-1 )
*           Not modified.
*
*  IWORK  - INTEGER array, dimension (N or M)
*           Workspace. Not referenced if PIVTNG = 'N'. Changed on exit.
*
*  INFO   - INTEGER
*           Error parameter on exit:
*             0 => normal return
*            -1 => M negative or unequal to N and SYM='S' or 'H'
*            -2 => N negative
*            -3 => DIST illegal string
*            -5 => SYM illegal string
*            -7 => MODE not in range -6 to 6
*            -8 => COND less than 1.0, and MODE neither -6, 0 nor 6
*           -10 => MODE neither -6, 0 nor 6 and RSIGN illegal string
*           -11 => GRADE illegal string, or GRADE='E' and
*                  M not equal to N, or GRADE='L', 'R', 'B', 'S' or 'E'
*                  and SYM = 'H', or GRADE='L', 'R', 'B', 'H' or 'E'
*                  and SYM = 'S'
*           -12 => GRADE = 'E' and DL contains zero
*           -13 => MODEL not in range -6 to 6 and GRADE= 'L', 'B', 'H',
*                  'S' or 'E'
*           -14 => CONDL less than 1.0, GRADE='L', 'B', 'H', 'S' or 'E',
*                  and MODEL neither -6, 0 nor 6
*           -16 => MODER not in range -6 to 6 and GRADE= 'R' or 'B'
*           -17 => CONDR less than 1.0, GRADE='R' or 'B', and
*                  MODER neither -6, 0 nor 6
*           -18 => PIVTNG illegal string, or PIVTNG='B' or 'F' and
*                  M not equal to N, or PIVTNG='L' or 'R' and SYM='S'
*                  or 'H'
*           -19 => IPIVOT contains out of range number and
*                  PIVTNG not equal to 'N'
*           -20 => KL negative
*           -21 => KU negative, or SYM='S' or 'H' and KU not equal to KL
*           -22 => SPARSE not in range 0. to 1.
*           -24 => PACK illegal string, or PACK='U', 'L', 'B' or 'Q'
*                  and SYM='N', or PACK='C' and SYM='N' and either KL
*                  not equal to 0 or N not equal to M, or PACK='R' and
*                  SYM='N', and either KU not equal to 0 or N not equal
*                  to M
*           -26 => LDA too small
*             1 => Error return from CLATM1 (computing D)
*             2 => Cannot scale diagonal to DMAX (max. entry is 0)
*             3 => Error return from CLATM1 (computing DL)
*             4 => Error return from CLATM1 (computing DR)
*             5 => ANORM is positive, but matrix constructed prior to
*                  attempting to scale it to have norm ANORM, is zero
*
*  =====================================================================
*
*     .. Parameters ..
      REAL               ZERO
      PARAMETER          ( ZERO = 0.0E0 )
      REAL               ONE
      PARAMETER          ( ONE = 1.0E0 )
      COMPLEX            CONE
      PARAMETER          ( CONE = ( 1.0E0, 0.0E0 ) )
      COMPLEX            CZERO
      PARAMETER          ( CZERO = ( 0.0E0, 0.0E0 ) )
*     ..
*     .. Local Scalars ..
      LOGICAL            BADPVT, DZERO, FULBND
      INTEGER            I, IDIST, IGRADE, IISUB, IPACK, IPVTNG, IRSIGN,
     $                   ISUB, ISYM, J, JJSUB, JSUB, K, KLL, KUU, MNMIN,
     $                   MNSUB, MXSUB, NPVTS
      REAL               ONORM, TEMP
      COMPLEX            CALPHA, CTEMP
*     ..
*     .. Local Arrays ..
      REAL               TEMPA( 1 )
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      REAL               CLANGB, CLANGE, CLANSB, CLANSP, CLANSY
      COMPLEX            CLATM2, CLATM3
      EXTERNAL           LSAME, CLANGB, CLANGE, CLANSB, CLANSP, CLANSY,
     $                   CLATM2, CLATM3
*     ..
*     .. External Subroutines ..
      EXTERNAL           CLATM1, CSSCAL, XERBLA
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABS, CONJG, MAX, MIN, MOD, REAL
*     ..
*     .. Executable Statements ..
*
*     1)      Decode and Test the input parameters.
*             Initialize flags & seed.
*
      INFO = 0
*
*     Quick return if possible
*
      IF( M.EQ.0 .OR. N.EQ.0 )
     $   RETURN
*
*     Decode DIST
*
      IF( LSAME( DIST, 'U' ) ) THEN
         IDIST = 1
      ELSE IF( LSAME( DIST, 'S' ) ) THEN
         IDIST = 2
      ELSE IF( LSAME( DIST, 'N' ) ) THEN
         IDIST = 3
      ELSE IF( LSAME( DIST, 'D' ) ) THEN
         IDIST = 4
      ELSE
         IDIST = -1
      END IF
*
*     Decode SYM
*
      IF( LSAME( SYM, 'H' ) ) THEN
         ISYM = 0
      ELSE IF( LSAME( SYM, 'N' ) ) THEN
         ISYM = 1
      ELSE IF( LSAME( SYM, 'S' ) ) THEN
         ISYM = 2
      ELSE
         ISYM = -1
      END IF
*
*     Decode RSIGN
*
      IF( LSAME( RSIGN, 'F' ) ) THEN
         IRSIGN = 0
      ELSE IF( LSAME( RSIGN, 'T' ) ) THEN
         IRSIGN = 1
      ELSE
         IRSIGN = -1
      END IF
*
*     Decode PIVTNG
*
      IF( LSAME( PIVTNG, 'N' ) ) THEN
         IPVTNG = 0
      ELSE IF( LSAME( PIVTNG, ' ' ) ) THEN
         IPVTNG = 0
      ELSE IF( LSAME( PIVTNG, 'L' ) ) THEN
         IPVTNG = 1
         NPVTS = M
      ELSE IF( LSAME( PIVTNG, 'R' ) ) THEN
         IPVTNG = 2
         NPVTS = N
      ELSE IF( LSAME( PIVTNG, 'B' ) ) THEN
         IPVTNG = 3
         NPVTS = MIN( N, M )
      ELSE IF( LSAME( PIVTNG, 'F' ) ) THEN
         IPVTNG = 3
         NPVTS = MIN( N, M )
      ELSE
         IPVTNG = -1
      END IF
*
*     Decode GRADE
*
      IF( LSAME( GRADE, 'N' ) ) THEN
         IGRADE = 0
      ELSE IF( LSAME( GRADE, 'L' ) ) THEN
         IGRADE = 1
      ELSE IF( LSAME( GRADE, 'R' ) ) THEN
         IGRADE = 2
      ELSE IF( LSAME( GRADE, 'B' ) ) THEN
         IGRADE = 3
      ELSE IF( LSAME( GRADE, 'E' ) ) THEN
         IGRADE = 4
      ELSE IF( LSAME( GRADE, 'H' ) ) THEN
         IGRADE = 5
      ELSE IF( LSAME( GRADE, 'S' ) ) THEN
         IGRADE = 6
      ELSE
         IGRADE = -1
      END IF
*
*     Decode PACK
*
      IF( LSAME( PACK, 'N' ) ) THEN
         IPACK = 0
      ELSE IF( LSAME( PACK, 'U' ) ) THEN
         IPACK = 1
      ELSE IF( LSAME( PACK, 'L' ) ) THEN
         IPACK = 2
      ELSE IF( LSAME( PACK, 'C' ) ) THEN
         IPACK = 3
      ELSE IF( LSAME( PACK, 'R' ) ) THEN
         IPACK = 4
      ELSE IF( LSAME( PACK, 'B' ) ) THEN
         IPACK = 5
      ELSE IF( LSAME( PACK, 'Q' ) ) THEN
         IPACK = 6
      ELSE IF( LSAME( PACK, 'Z' ) ) THEN
         IPACK = 7
      ELSE
         IPACK = -1
      END IF
*
*     Set certain internal parameters
*
      MNMIN = MIN( M, N )
      KLL = MIN( KL, M-1 )
      KUU = MIN( KU, N-1 )
*
*     If inv(DL) is used, check to see if DL has a zero entry.
*
      DZERO = .FALSE.
      IF( IGRADE.EQ.4 .AND. MODEL.EQ.0 ) THEN
         DO 10 I = 1, M
            IF( DL( I ).EQ.CZERO )
     $         DZERO = .TRUE.
   10    CONTINUE
      END IF
*
*     Check values in IPIVOT
*
      BADPVT = .FALSE.
      IF( IPVTNG.GT.0 ) THEN
         DO 20 J = 1, NPVTS
            IF( IPIVOT( J ).LE.0 .OR. IPIVOT( J ).GT.NPVTS )
     $         BADPVT = .TRUE.
   20    CONTINUE
      END IF
*
*     Set INFO if an error
*
      IF( M.LT.0 ) THEN
         INFO = -1
      ELSE IF( M.NE.N .AND. ( ISYM.EQ.0 .OR. ISYM.EQ.2 ) ) THEN
         INFO = -1
      ELSE IF( N.LT.0 ) THEN
         INFO = -2
      ELSE IF( IDIST.EQ.-1 ) THEN
         INFO = -3
      ELSE IF( ISYM.EQ.-1 ) THEN
         INFO = -5
      ELSE IF( MODE.LT.-6 .OR. MODE.GT.6 ) THEN
         INFO = -7
      ELSE IF( ( MODE.NE.-6 .AND. MODE.NE.0 .AND. MODE.NE.6 ) .AND.
     $         COND.LT.ONE ) THEN
         INFO = -8
      ELSE IF( ( MODE.NE.-6 .AND. MODE.NE.0 .AND. MODE.NE.6 ) .AND.
     $         IRSIGN.EQ.-1 ) THEN
         INFO = -10
      ELSE IF( IGRADE.EQ.-1 .OR. ( IGRADE.EQ.4 .AND. M.NE.N ) .OR.
     $         ( ( IGRADE.EQ.1 .OR. IGRADE.EQ.2 .OR. IGRADE.EQ.3 .OR.
     $         IGRADE.EQ.4 .OR. IGRADE.EQ.6 ) .AND. ISYM.EQ.0 ) .OR.
     $         ( ( IGRADE.EQ.1 .OR. IGRADE.EQ.2 .OR. IGRADE.EQ.3 .OR.
     $         IGRADE.EQ.4 .OR. IGRADE.EQ.5 ) .AND. ISYM.EQ.2 ) ) THEN
         INFO = -11
      ELSE IF( IGRADE.EQ.4 .AND. DZERO ) THEN
         INFO = -12
      ELSE IF( ( IGRADE.EQ.1 .OR. IGRADE.EQ.3 .OR. IGRADE.EQ.4 .OR.
     $         IGRADE.EQ.5 .OR. IGRADE.EQ.6 ) .AND.
     $         ( MODEL.LT.-6 .OR. MODEL.GT.6 ) ) THEN
         INFO = -13
      ELSE IF( ( IGRADE.EQ.1 .OR. IGRADE.EQ.3 .OR. IGRADE.EQ.4 .OR.
     $         IGRADE.EQ.5 .OR. IGRADE.EQ.6 ) .AND.
     $         ( MODEL.NE.-6 .AND. MODEL.NE.0 .AND. MODEL.NE.6 ) .AND.
     $         CONDL.LT.ONE ) THEN
         INFO = -14
      ELSE IF( ( IGRADE.EQ.2 .OR. IGRADE.EQ.3 ) .AND.
     $         ( MODER.LT.-6 .OR. MODER.GT.6 ) ) THEN
         INFO = -16
      ELSE IF( ( IGRADE.EQ.2 .OR. IGRADE.EQ.3 ) .AND.
     $         ( MODER.NE.-6 .AND. MODER.NE.0 .AND. MODER.NE.6 ) .AND.
     $         CONDR.LT.ONE ) THEN
         INFO = -17
      ELSE IF( IPVTNG.EQ.-1 .OR. ( IPVTNG.EQ.3 .AND. M.NE.N ) .OR.
     $         ( ( IPVTNG.EQ.1 .OR. IPVTNG.EQ.2 ) .AND. ( ISYM.EQ.0 .OR.
     $         ISYM.EQ.2 ) ) ) THEN
         INFO = -18
      ELSE IF( IPVTNG.NE.0 .AND. BADPVT ) THEN
         INFO = -19
      ELSE IF( KL.LT.0 ) THEN
         INFO = -20
      ELSE IF( KU.LT.0 .OR. ( ( ISYM.EQ.0 .OR. ISYM.EQ.2 ) .AND. KL.NE.
     $         KU ) ) THEN
         INFO = -21
      ELSE IF( SPARSE.LT.ZERO .OR. SPARSE.GT.ONE ) THEN
         INFO = -22
      ELSE IF( IPACK.EQ.-1 .OR. ( ( IPACK.EQ.1 .OR. IPACK.EQ.2 .OR.
     $         IPACK.EQ.5 .OR. IPACK.EQ.6 ) .AND. ISYM.EQ.1 ) .OR.
     $         ( IPACK.EQ.3 .AND. ISYM.EQ.1 .AND. ( KL.NE.0 .OR. M.NE.
     $         N ) ) .OR. ( IPACK.EQ.4 .AND. ISYM.EQ.1 .AND. ( KU.NE.
     $         0 .OR. M.NE.N ) ) ) THEN
         INFO = -24
      ELSE IF( ( ( IPACK.EQ.0 .OR. IPACK.EQ.1 .OR. IPACK.EQ.2 ) .AND.
     $         LDA.LT.MAX( 1, M ) ) .OR. ( ( IPACK.EQ.3 .OR. IPACK.EQ.
     $         4 ) .AND. LDA.LT.1 ) .OR. ( ( IPACK.EQ.5 .OR. IPACK.EQ.
     $         6 ) .AND. LDA.LT.KUU+1 ) .OR.
     $         ( IPACK.EQ.7 .AND. LDA.LT.KLL+KUU+1 ) ) THEN
         INFO = -26
      END IF
*
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'CLATMR', -INFO )
         RETURN
      END IF
*
*     Decide if we can pivot consistently
*
      FULBND = .FALSE.
      IF( KUU.EQ.N-1 .AND. KLL.EQ.M-1 )
     $   FULBND = .TRUE.
*
*     Initialize random number generator
*
      DO 30 I = 1, 4
         ISEED( I ) = MOD( ABS( ISEED( I ) ), 4096 )
   30 CONTINUE
*
      ISEED( 4 ) = 2*( ISEED( 4 ) / 2 ) + 1
*
*     2)      Set up D, DL, and DR, if indicated.
*
*             Compute D according to COND and MODE
*
      CALL CLATM1( MODE, COND, IRSIGN, IDIST, ISEED, D, MNMIN, INFO )
      IF( INFO.NE.0 ) THEN
         INFO = 1
         RETURN
      END IF
      IF( MODE.NE.0 .AND. MODE.NE.-6 .AND. MODE.NE.6 ) THEN
*
*        Scale by DMAX
*
         TEMP = ABS( D( 1 ) )
         DO 40 I = 2, MNMIN
            TEMP = MAX( TEMP, ABS( D( I ) ) )
   40    CONTINUE
         IF( TEMP.EQ.ZERO .AND. DMAX.NE.CZERO ) THEN
            INFO = 2
            RETURN
         END IF
         IF( TEMP.NE.ZERO ) THEN
            CALPHA = DMAX / TEMP
         ELSE
            CALPHA = CONE
         END IF
         DO 50 I = 1, MNMIN
            D( I ) = CALPHA*D( I )
   50    CONTINUE
*
      END IF
*
*     If matrix Hermitian, make D real
*
      IF( ISYM.EQ.0 ) THEN
         DO 60 I = 1, MNMIN
            D( I ) = REAL( D( I ) )
   60    CONTINUE
      END IF
*
*     Compute DL if grading set
*
      IF( IGRADE.EQ.1 .OR. IGRADE.EQ.3 .OR. IGRADE.EQ.4 .OR. IGRADE.EQ.
     $    5 .OR. IGRADE.EQ.6 ) THEN
         CALL CLATM1( MODEL, CONDL, 0, IDIST, ISEED, DL, M, INFO )
         IF( INFO.NE.0 ) THEN
            INFO = 3
            RETURN
         END IF
      END IF
*
*     Compute DR if grading set
*
      IF( IGRADE.EQ.2 .OR. IGRADE.EQ.3 ) THEN
         CALL CLATM1( MODER, CONDR, 0, IDIST, ISEED, DR, N, INFO )
         IF( INFO.NE.0 ) THEN
            INFO = 4
            RETURN
         END IF
      END IF
*
*     3)     Generate IWORK if pivoting
*
      IF( IPVTNG.GT.0 ) THEN
         DO 70 I = 1, NPVTS
            IWORK( I ) = I
   70    CONTINUE
         IF( FULBND ) THEN
            DO 80 I = 1, NPVTS
               K = IPIVOT( I )
               J = IWORK( I )
               IWORK( I ) = IWORK( K )
               IWORK( K ) = J
   80       CONTINUE
         ELSE
            DO 90 I = NPVTS, 1, -1
               K = IPIVOT( I )
               J = IWORK( I )
               IWORK( I ) = IWORK( K )
               IWORK( K ) = J
   90       CONTINUE
         END IF
      END IF
*
*     4)      Generate matrices for each kind of PACKing
*             Always sweep matrix columnwise (if symmetric, upper
*             half only) so that matrix generated does not depend
*             on PACK
*
      IF( FULBND ) THEN
*
*        Use CLATM3 so matrices generated with differing PIVOTing only
*        differ only in the order of their rows and/or columns.
*
         IF( IPACK.EQ.0 ) THEN
            IF( ISYM.EQ.0 ) THEN
               DO 110 J = 1, N
                  DO 100 I = 1, J
                     CTEMP = CLATM3( M, N, I, J, ISUB, JSUB, KL, KU,
     $                       IDIST, ISEED, D, IGRADE, DL, DR, IPVTNG,
     $                       IWORK, SPARSE )
                     A( ISUB, JSUB ) = CTEMP
                     A( JSUB, ISUB ) = CONJG( CTEMP )
  100             CONTINUE
  110          CONTINUE
            ELSE IF( ISYM.EQ.1 ) THEN
               DO 130 J = 1, N
                  DO 120 I = 1, M
                     CTEMP = CLATM3( M, N, I, J, ISUB, JSUB, KL, KU,
     $                       IDIST, ISEED, D, IGRADE, DL, DR, IPVTNG,
     $                       IWORK, SPARSE )
                     A( ISUB, JSUB ) = CTEMP
  120             CONTINUE
  130          CONTINUE
            ELSE IF( ISYM.EQ.2 ) THEN
               DO 150 J = 1, N
                  DO 140 I = 1, J
                     CTEMP = CLATM3( M, N, I, J, ISUB, JSUB, KL, KU,
     $                       IDIST, ISEED, D, IGRADE, DL, DR, IPVTNG,
     $                       IWORK, SPARSE )
                     A( ISUB, JSUB ) = CTEMP
                     A( JSUB, ISUB ) = CTEMP
  140             CONTINUE
  150          CONTINUE
            END IF
*
         ELSE IF( IPACK.EQ.1 ) THEN
*
            DO 170 J = 1, N
               DO 160 I = 1, J
                  CTEMP = CLATM3( M, N, I, J, ISUB, JSUB, KL, KU, IDIST,
     $                    ISEED, D, IGRADE, DL, DR, IPVTNG, IWORK,
     $                    SPARSE )
                  MNSUB = MIN( ISUB, JSUB )
                  MXSUB = MAX( ISUB, JSUB )
                  IF( MXSUB.EQ.ISUB .AND. ISYM.EQ.0 ) THEN
                     A( MNSUB, MXSUB ) = CONJG( CTEMP )
                  ELSE
                     A( MNSUB, MXSUB ) = CTEMP
                  END IF
                  IF( MNSUB.NE.MXSUB )
     $               A( MXSUB, MNSUB ) = CZERO
  160          CONTINUE
  170       CONTINUE
*
         ELSE IF( IPACK.EQ.2 ) THEN
*
            DO 190 J = 1, N
               DO 180 I = 1, J
                  CTEMP = CLATM3( M, N, I, J, ISUB, JSUB, KL, KU, IDIST,
     $                    ISEED, D, IGRADE, DL, DR, IPVTNG, IWORK,
     $                    SPARSE )
                  MNSUB = MIN( ISUB, JSUB )
                  MXSUB = MAX( ISUB, JSUB )
                  IF( MXSUB.EQ.JSUB .AND. ISYM.EQ.0 ) THEN
                     A( MXSUB, MNSUB ) = CONJG( CTEMP )
                  ELSE
                     A( MXSUB, MNSUB ) = CTEMP
                  END IF
                  IF( MNSUB.NE.MXSUB )
     $               A( MNSUB, MXSUB ) = CZERO
  180          CONTINUE
  190       CONTINUE
*
         ELSE IF( IPACK.EQ.3 ) THEN
*
            DO 210 J = 1, N
               DO 200 I = 1, J
                  CTEMP = CLATM3( M, N, I, J, ISUB, JSUB, KL, KU, IDIST,
     $                    ISEED, D, IGRADE, DL, DR, IPVTNG, IWORK,
     $                    SPARSE )
*
*                 Compute K = location of (ISUB,JSUB) entry in packed
*                 array
*
                  MNSUB = MIN( ISUB, JSUB )
                  MXSUB = MAX( ISUB, JSUB )
                  K = MXSUB*( MXSUB-1 ) / 2 + MNSUB
*
*                 Convert K to (IISUB,JJSUB) location
*
                  JJSUB = ( K-1 ) / LDA + 1
                  IISUB = K - LDA*( JJSUB-1 )
*
                  IF( MXSUB.EQ.ISUB .AND. ISYM.EQ.0 ) THEN
                     A( IISUB, JJSUB ) = CONJG( CTEMP )
                  ELSE
                     A( IISUB, JJSUB ) = CTEMP
                  END IF
  200          CONTINUE
  210       CONTINUE
*
         ELSE IF( IPACK.EQ.4 ) THEN
*
            DO 230 J = 1, N
               DO 220 I = 1, J
                  CTEMP = CLATM3( M, N, I, J, ISUB, JSUB, KL, KU, IDIST,
     $                    ISEED, D, IGRADE, DL, DR, IPVTNG, IWORK,
     $                    SPARSE )
*
*                 Compute K = location of (I,J) entry in packed array
*
                  MNSUB = MIN( ISUB, JSUB )
                  MXSUB = MAX( ISUB, JSUB )
                  IF( MNSUB.EQ.1 ) THEN
                     K = MXSUB
                  ELSE
                     K = N*( N+1 ) / 2 - ( N-MNSUB+1 )*( N-MNSUB+2 ) /
     $                   2 + MXSUB - MNSUB + 1
                  END IF
*
*                 Convert K to (IISUB,JJSUB) location
*
                  JJSUB = ( K-1 ) / LDA + 1
                  IISUB = K - LDA*( JJSUB-1 )
*
                  IF( MXSUB.EQ.JSUB .AND. ISYM.EQ.0 ) THEN
                     A( IISUB, JJSUB ) = CONJG( CTEMP )
                  ELSE
                     A( IISUB, JJSUB ) = CTEMP
                  END IF
  220          CONTINUE
  230       CONTINUE
*
         ELSE IF( IPACK.EQ.5 ) THEN
*
            DO 250 J = 1, N
               DO 240 I = J - KUU, J
                  IF( I.LT.1 ) THEN
                     A( J-I+1, I+N ) = CZERO
                  ELSE
                     CTEMP = CLATM3( M, N, I, J, ISUB, JSUB, KL, KU,
     $                       IDIST, ISEED, D, IGRADE, DL, DR, IPVTNG,
     $                       IWORK, SPARSE )
                     MNSUB = MIN( ISUB, JSUB )
                     MXSUB = MAX( ISUB, JSUB )
                     IF( MXSUB.EQ.JSUB .AND. ISYM.EQ.0 ) THEN
                        A( MXSUB-MNSUB+1, MNSUB ) = CONJG( CTEMP )
                     ELSE
                        A( MXSUB-MNSUB+1, MNSUB ) = CTEMP
                     END IF
                  END IF
  240          CONTINUE
  250       CONTINUE
*
         ELSE IF( IPACK.EQ.6 ) THEN
*
            DO 270 J = 1, N
               DO 260 I = J - KUU, J
                  CTEMP = CLATM3( M, N, I, J, ISUB, JSUB, KL, KU, IDIST,
     $                    ISEED, D, IGRADE, DL, DR, IPVTNG, IWORK,
     $                    SPARSE )
                  MNSUB = MIN( ISUB, JSUB )
                  MXSUB = MAX( ISUB, JSUB )
                  IF( MXSUB.EQ.ISUB .AND. ISYM.EQ.0 ) THEN
                     A( MNSUB-MXSUB+KUU+1, MXSUB ) = CONJG( CTEMP )
                  ELSE
                     A( MNSUB-MXSUB+KUU+1, MXSUB ) = CTEMP
                  END IF
  260          CONTINUE
  270       CONTINUE
*
         ELSE IF( IPACK.EQ.7 ) THEN
*
            IF( ISYM.NE.1 ) THEN
               DO 290 J = 1, N
                  DO 280 I = J - KUU, J
                     CTEMP = CLATM3( M, N, I, J, ISUB, JSUB, KL, KU,
     $                       IDIST, ISEED, D, IGRADE, DL, DR, IPVTNG,
     $                       IWORK, SPARSE )
                     MNSUB = MIN( ISUB, JSUB )
                     MXSUB = MAX( ISUB, JSUB )
                     IF( I.LT.1 )
     $                  A( J-I+1+KUU, I+N ) = CZERO
                     IF( MXSUB.EQ.ISUB .AND. ISYM.EQ.0 ) THEN
                        A( MNSUB-MXSUB+KUU+1, MXSUB ) = CONJG( CTEMP )
                     ELSE
                        A( MNSUB-MXSUB+KUU+1, MXSUB ) = CTEMP
                     END IF
                     IF( I.GE.1 .AND. MNSUB.NE.MXSUB ) THEN
                        IF( MNSUB.EQ.ISUB .AND. ISYM.EQ.0 ) THEN
                           A( MXSUB-MNSUB+1+KUU,
     $                        MNSUB ) = CONJG( CTEMP )
                        ELSE
                           A( MXSUB-MNSUB+1+KUU, MNSUB ) = CTEMP
                        END IF
                     END IF
  280             CONTINUE
  290          CONTINUE
            ELSE IF( ISYM.EQ.1 ) THEN
               DO 310 J = 1, N
                  DO 300 I = J - KUU, J + KLL
                     CTEMP = CLATM3( M, N, I, J, ISUB, JSUB, KL, KU,
     $                       IDIST, ISEED, D, IGRADE, DL, DR, IPVTNG,
     $                       IWORK, SPARSE )
                     A( ISUB-JSUB+KUU+1, JSUB ) = CTEMP
  300             CONTINUE
  310          CONTINUE
            END IF
*
         END IF
*
      ELSE
*
*        Use CLATM2
*
         IF( IPACK.EQ.0 ) THEN
            IF( ISYM.EQ.0 ) THEN
               DO 330 J = 1, N
                  DO 320 I = 1, J
                     A( I, J ) = CLATM2( M, N, I, J, KL, KU, IDIST,
     $                           ISEED, D, IGRADE, DL, DR, IPVTNG,
     $                           IWORK, SPARSE )
                     A( J, I ) = CONJG( A( I, J ) )
  320             CONTINUE
  330          CONTINUE
            ELSE IF( ISYM.EQ.1 ) THEN
               DO 350 J = 1, N
                  DO 340 I = 1, M
                     A( I, J ) = CLATM2( M, N, I, J, KL, KU, IDIST,
     $                           ISEED, D, IGRADE, DL, DR, IPVTNG,
     $                           IWORK, SPARSE )
  340             CONTINUE
  350          CONTINUE
            ELSE IF( ISYM.EQ.2 ) THEN
               DO 370 J = 1, N
                  DO 360 I = 1, J
                     A( I, J ) = CLATM2( M, N, I, J, KL, KU, IDIST,
     $                           ISEED, D, IGRADE, DL, DR, IPVTNG,
     $                           IWORK, SPARSE )
                     A( J, I ) = A( I, J )
  360             CONTINUE
  370          CONTINUE
            END IF
*
         ELSE IF( IPACK.EQ.1 ) THEN
*
            DO 390 J = 1, N
               DO 380 I = 1, J
                  A( I, J ) = CLATM2( M, N, I, J, KL, KU, IDIST, ISEED,
     $                        D, IGRADE, DL, DR, IPVTNG, IWORK, SPARSE )
                  IF( I.NE.J )
     $               A( J, I ) = CZERO
  380          CONTINUE
  390       CONTINUE
*
         ELSE IF( IPACK.EQ.2 ) THEN
*
            DO 410 J = 1, N
               DO 400 I = 1, J
                  IF( ISYM.EQ.0 ) THEN
                     A( J, I ) = CONJG( CLATM2( M, N, I, J, KL, KU,
     $                           IDIST, ISEED, D, IGRADE, DL, DR,
     $                           IPVTNG, IWORK, SPARSE ) )
                  ELSE
                     A( J, I ) = CLATM2( M, N, I, J, KL, KU, IDIST,
     $                           ISEED, D, IGRADE, DL, DR, IPVTNG,
     $                           IWORK, SPARSE )
                  END IF
                  IF( I.NE.J )
     $               A( I, J ) = CZERO
  400          CONTINUE
  410       CONTINUE
*
         ELSE IF( IPACK.EQ.3 ) THEN
*
            ISUB = 0
            JSUB = 1
            DO 430 J = 1, N
               DO 420 I = 1, J
                  ISUB = ISUB + 1
                  IF( ISUB.GT.LDA ) THEN
                     ISUB = 1
                     JSUB = JSUB + 1
                  END IF
                  A( ISUB, JSUB ) = CLATM2( M, N, I, J, KL, KU, IDIST,
     $                              ISEED, D, IGRADE, DL, DR, IPVTNG,
     $                              IWORK, SPARSE )
  420          CONTINUE
  430       CONTINUE
*
         ELSE IF( IPACK.EQ.4 ) THEN
*
            IF( ISYM.EQ.0 .OR. ISYM.EQ.2 ) THEN
               DO 450 J = 1, N
                  DO 440 I = 1, J
*
*                    Compute K = location of (I,J) entry in packed array
*
                     IF( I.EQ.1 ) THEN
                        K = J
                     ELSE
                        K = N*( N+1 ) / 2 - ( N-I+1 )*( N-I+2 ) / 2 +
     $                      J - I + 1
                     END IF
*
*                    Convert K to (ISUB,JSUB) location
*
                     JSUB = ( K-1 ) / LDA + 1
                     ISUB = K - LDA*( JSUB-1 )
*
                     A( ISUB, JSUB ) = CLATM2( M, N, I, J, KL, KU,
     $                                 IDIST, ISEED, D, IGRADE, DL, DR,
     $                                 IPVTNG, IWORK, SPARSE )
                     IF( ISYM.EQ.0 )
     $                  A( ISUB, JSUB ) = CONJG( A( ISUB, JSUB ) )
  440             CONTINUE
  450          CONTINUE
            ELSE
               ISUB = 0
               JSUB = 1
               DO 470 J = 1, N
                  DO 460 I = J, M
                     ISUB = ISUB + 1
                     IF( ISUB.GT.LDA ) THEN
                        ISUB = 1
                        JSUB = JSUB + 1
                     END IF
                     A( ISUB, JSUB ) = CLATM2( M, N, I, J, KL, KU,
     $                                 IDIST, ISEED, D, IGRADE, DL, DR,
     $                                 IPVTNG, IWORK, SPARSE )
  460             CONTINUE
  470          CONTINUE
            END IF
*
         ELSE IF( IPACK.EQ.5 ) THEN
*
            DO 490 J = 1, N
               DO 480 I = J - KUU, J
                  IF( I.LT.1 ) THEN
                     A( J-I+1, I+N ) = CZERO
                  ELSE
                     IF( ISYM.EQ.0 ) THEN
                        A( J-I+1, I ) = CONJG( CLATM2( M, N, I, J, KL,
     $                                  KU, IDIST, ISEED, D, IGRADE, DL,
     $                                  DR, IPVTNG, IWORK, SPARSE ) )
                     ELSE
                        A( J-I+1, I ) = CLATM2( M, N, I, J, KL, KU,
     $                                  IDIST, ISEED, D, IGRADE, DL, DR,
     $                                  IPVTNG, IWORK, SPARSE )
                     END IF
                  END IF
  480          CONTINUE
  490       CONTINUE
*
         ELSE IF( IPACK.EQ.6 ) THEN
*
            DO 510 J = 1, N
               DO 500 I = J - KUU, J
                  A( I-J+KUU+1, J ) = CLATM2( M, N, I, J, KL, KU, IDIST,
     $                                ISEED, D, IGRADE, DL, DR, IPVTNG,
     $                                IWORK, SPARSE )
  500          CONTINUE
  510       CONTINUE
*
         ELSE IF( IPACK.EQ.7 ) THEN
*
            IF( ISYM.NE.1 ) THEN
               DO 530 J = 1, N
                  DO 520 I = J - KUU, J
                     A( I-J+KUU+1, J ) = CLATM2( M, N, I, J, KL, KU,
     $                                   IDIST, ISEED, D, IGRADE, DL,
     $                                   DR, IPVTNG, IWORK, SPARSE )
                     IF( I.LT.1 )
     $                  A( J-I+1+KUU, I+N ) = CZERO
                     IF( I.GE.1 .AND. I.NE.J ) THEN
                        IF( ISYM.EQ.0 ) THEN
                           A( J-I+1+KUU, I ) = CONJG( A( I-J+KUU+1,
     $                                         J ) )
                        ELSE
                           A( J-I+1+KUU, I ) = A( I-J+KUU+1, J )
                        END IF
                     END IF
  520             CONTINUE
  530          CONTINUE
            ELSE IF( ISYM.EQ.1 ) THEN
               DO 550 J = 1, N
                  DO 540 I = J - KUU, J + KLL
                     A( I-J+KUU+1, J ) = CLATM2( M, N, I, J, KL, KU,
     $                                   IDIST, ISEED, D, IGRADE, DL,
     $                                   DR, IPVTNG, IWORK, SPARSE )
  540             CONTINUE
  550          CONTINUE
            END IF
*
         END IF
*
      END IF
*
*     5)      Scaling the norm
*
      IF( IPACK.EQ.0 ) THEN
         ONORM = CLANGE( 'M', M, N, A, LDA, TEMPA )
      ELSE IF( IPACK.EQ.1 ) THEN
         ONORM = CLANSY( 'M', 'U', N, A, LDA, TEMPA )
      ELSE IF( IPACK.EQ.2 ) THEN
         ONORM = CLANSY( 'M', 'L', N, A, LDA, TEMPA )
      ELSE IF( IPACK.EQ.3 ) THEN
         ONORM = CLANSP( 'M', 'U', N, A, TEMPA )
      ELSE IF( IPACK.EQ.4 ) THEN
         ONORM = CLANSP( 'M', 'L', N, A, TEMPA )
      ELSE IF( IPACK.EQ.5 ) THEN
         ONORM = CLANSB( 'M', 'L', N, KLL, A, LDA, TEMPA )
      ELSE IF( IPACK.EQ.6 ) THEN
         ONORM = CLANSB( 'M', 'U', N, KUU, A, LDA, TEMPA )
      ELSE IF( IPACK.EQ.7 ) THEN
         ONORM = CLANGB( 'M', N, KLL, KUU, A, LDA, TEMPA )
      END IF
*
      IF( ANORM.GE.ZERO ) THEN
*
         IF( ANORM.GT.ZERO .AND. ONORM.EQ.ZERO ) THEN
*
*           Desired scaling impossible
*
            INFO = 5
            RETURN
*
         ELSE IF( ( ANORM.GT.ONE .AND. ONORM.LT.ONE ) .OR.
     $            ( ANORM.LT.ONE .AND. ONORM.GT.ONE ) ) THEN
*
*           Scale carefully to avoid over / underflow
*
            IF( IPACK.LE.2 ) THEN
               DO 560 J = 1, N
                  CALL CSSCAL( M, ONE / ONORM, A( 1, J ), 1 )
                  CALL CSSCAL( M, ANORM, A( 1, J ), 1 )
  560          CONTINUE
*
            ELSE IF( IPACK.EQ.3 .OR. IPACK.EQ.4 ) THEN
*
               CALL CSSCAL( N*( N+1 ) / 2, ONE / ONORM, A, 1 )
               CALL CSSCAL( N*( N+1 ) / 2, ANORM, A, 1 )
*
            ELSE IF( IPACK.GE.5 ) THEN
*
               DO 570 J = 1, N
                  CALL CSSCAL( KLL+KUU+1, ONE / ONORM, A( 1, J ), 1 )
                  CALL CSSCAL( KLL+KUU+1, ANORM, A( 1, J ), 1 )
  570          CONTINUE
*
            END IF
*
         ELSE
*
*           Scale straightforwardly
*
            IF( IPACK.LE.2 ) THEN
               DO 580 J = 1, N
                  CALL CSSCAL( M, ANORM / ONORM, A( 1, J ), 1 )
  580          CONTINUE
*
            ELSE IF( IPACK.EQ.3 .OR. IPACK.EQ.4 ) THEN
*
               CALL CSSCAL( N*( N+1 ) / 2, ANORM / ONORM, A, 1 )
*
            ELSE IF( IPACK.GE.5 ) THEN
*
               DO 590 J = 1, N
                  CALL CSSCAL( KLL+KUU+1, ANORM / ONORM, A( 1, J ), 1 )
  590          CONTINUE
            END IF
*
         END IF
*
      END IF
*
*     End of CLATMR
*
      END

Generated by  Doxygen 1.6.0   Back to index