Logo Search packages:      
Sourcecode: lapack3 version File versions  Download package

sgesvd.f

      SUBROUTINE SGESVD( JOBU, JOBVT, M, N, A, LDA, S, U, LDU, VT, LDVT,
     $                   WORK, LWORK, INFO )
*
*  -- LAPACK driver routine (version 3.0) --
*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
*     Courant Institute, Argonne National Lab, and Rice University
*     October 31, 1999
*
*     .. Scalar Arguments ..
      CHARACTER          JOBU, JOBVT
      INTEGER            INFO, LDA, LDU, LDVT, LWORK, M, N
*     ..
*     .. Array Arguments ..
      REAL               A( LDA, * ), S( * ), U( LDU, * ),
     $                   VT( LDVT, * ), WORK( * )
*     ..
*
*  Purpose
*  =======
*
*  SGESVD computes the singular value decomposition (SVD) of a real
*  M-by-N matrix A, optionally computing the left and/or right singular
*  vectors. The SVD is written
*
*       A = U * SIGMA * transpose(V)
*
*  where SIGMA is an M-by-N matrix which is zero except for its
*  min(m,n) diagonal elements, U is an M-by-M orthogonal matrix, and
*  V is an N-by-N orthogonal matrix.  The diagonal elements of SIGMA
*  are the singular values of A; they are real and non-negative, and
*  are returned in descending order.  The first min(m,n) columns of
*  U and V are the left and right singular vectors of A.
*
*  Note that the routine returns V**T, not V.
*
*  Arguments
*  =========
*
*  JOBU    (input) CHARACTER*1
*          Specifies options for computing all or part of the matrix U:
*          = 'A':  all M columns of U are returned in array U:
*          = 'S':  the first min(m,n) columns of U (the left singular
*                  vectors) are returned in the array U;
*          = 'O':  the first min(m,n) columns of U (the left singular
*                  vectors) are overwritten on the array A;
*          = 'N':  no columns of U (no left singular vectors) are
*                  computed.
*
*  JOBVT   (input) CHARACTER*1
*          Specifies options for computing all or part of the matrix
*          V**T:
*          = 'A':  all N rows of V**T are returned in the array VT;
*          = 'S':  the first min(m,n) rows of V**T (the right singular
*                  vectors) are returned in the array VT;
*          = 'O':  the first min(m,n) rows of V**T (the right singular
*                  vectors) are overwritten on the array A;
*          = 'N':  no rows of V**T (no right singular vectors) are
*                  computed.
*
*          JOBVT and JOBU cannot both be 'O'.
*
*  M       (input) INTEGER
*          The number of rows of the input matrix A.  M >= 0.
*
*  N       (input) INTEGER
*          The number of columns of the input matrix A.  N >= 0.
*
*  A       (input/output) REAL array, dimension (LDA,N)
*          On entry, the M-by-N matrix A.
*          On exit,
*          if JOBU = 'O',  A is overwritten with the first min(m,n)
*                          columns of U (the left singular vectors,
*                          stored columnwise);
*          if JOBVT = 'O', A is overwritten with the first min(m,n)
*                          rows of V**T (the right singular vectors,
*                          stored rowwise);
*          if JOBU .ne. 'O' and JOBVT .ne. 'O', the contents of A
*                          are destroyed.
*
*  LDA     (input) INTEGER
*          The leading dimension of the array A.  LDA >= max(1,M).
*
*  S       (output) REAL array, dimension (min(M,N))
*          The singular values of A, sorted so that S(i) >= S(i+1).
*
*  U       (output) REAL array, dimension (LDU,UCOL)
*          (LDU,M) if JOBU = 'A' or (LDU,min(M,N)) if JOBU = 'S'.
*          If JOBU = 'A', U contains the M-by-M orthogonal matrix U;
*          if JOBU = 'S', U contains the first min(m,n) columns of U
*          (the left singular vectors, stored columnwise);
*          if JOBU = 'N' or 'O', U is not referenced.
*
*  LDU     (input) INTEGER
*          The leading dimension of the array U.  LDU >= 1; if
*          JOBU = 'S' or 'A', LDU >= M.
*
*  VT      (output) REAL array, dimension (LDVT,N)
*          If JOBVT = 'A', VT contains the N-by-N orthogonal matrix
*          V**T;
*          if JOBVT = 'S', VT contains the first min(m,n) rows of
*          V**T (the right singular vectors, stored rowwise);
*          if JOBVT = 'N' or 'O', VT is not referenced.
*
*  LDVT    (input) INTEGER
*          The leading dimension of the array VT.  LDVT >= 1; if
*          JOBVT = 'A', LDVT >= N; if JOBVT = 'S', LDVT >= min(M,N).
*
*  WORK    (workspace/output) REAL array, dimension (LWORK)
*          On exit, if INFO = 0, WORK(1) returns the optimal LWORK;
*          if INFO > 0, WORK(2:MIN(M,N)) contains the unconverged
*          superdiagonal elements of an upper bidiagonal matrix B
*          whose diagonal is in S (not necessarily sorted). B
*          satisfies A = U * B * VT, so it has the same singular values
*          as A, and singular vectors related by U and VT.
*
*  LWORK   (input) INTEGER
*          The dimension of the array WORK. LWORK >= 1.
*          LWORK >= MAX(3*MIN(M,N)+MAX(M,N),5*MIN(M,N)).
*          For good performance, LWORK should generally be larger.
*
*          If LWORK = -1, then a workspace query is assumed; the routine
*          only calculates the optimal size of the WORK array, returns
*          this value as the first entry of the WORK array, and no error
*          message related to LWORK is issued by XERBLA.
*
*  INFO    (output) INTEGER
*          = 0:  successful exit.
*          < 0:  if INFO = -i, the i-th argument had an illegal value.
*          > 0:  if SBDSQR did not converge, INFO specifies how many
*                superdiagonals of an intermediate bidiagonal form B
*                did not converge to zero. See the description of WORK
*                above for details.
*
*  =====================================================================
*
*     .. Parameters ..
      REAL               ZERO, ONE
      PARAMETER          ( ZERO = 0.0E0, ONE = 1.0E0 )
*     ..
*     .. Local Scalars ..
      LOGICAL            LQUERY, WNTUA, WNTUAS, WNTUN, WNTUO, WNTUS,
     $                   WNTVA, WNTVAS, WNTVN, WNTVO, WNTVS
      INTEGER            BDSPAC, BLK, CHUNK, I, IE, IERR, IR, ISCL,
     $                   ITAU, ITAUP, ITAUQ, IU, IWORK, LDWRKR, LDWRKU,
     $                   MAXWRK, MINMN, MINWRK, MNTHR, NCU, NCVT, NRU,
     $                   NRVT, WRKBL
      REAL               ANRM, BIGNUM, EPS, SMLNUM
*     ..
*     .. Local Arrays ..
      REAL               DUM( 1 )
*     ..
*     .. External Subroutines ..
      EXTERNAL           SBDSQR, SGEBRD, SGELQF, SGEMM, SGEQRF, SLACPY,
     $                   SLASCL, SLASET, SORGBR, SORGLQ, SORGQR, SORMBR,
     $                   XERBLA
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      INTEGER            ILAENV
      REAL               SLAMCH, SLANGE
      EXTERNAL           LSAME, ILAENV, SLAMCH, SLANGE
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          MAX, MIN, SQRT
*     ..
*     .. Executable Statements ..
*
*     Test the input arguments
*
      INFO = 0
      MINMN = MIN( M, N )
      MNTHR = ILAENV( 6, 'SGESVD', JOBU // JOBVT, M, N, 0, 0 )
      WNTUA = LSAME( JOBU, 'A' )
      WNTUS = LSAME( JOBU, 'S' )
      WNTUAS = WNTUA .OR. WNTUS
      WNTUO = LSAME( JOBU, 'O' )
      WNTUN = LSAME( JOBU, 'N' )
      WNTVA = LSAME( JOBVT, 'A' )
      WNTVS = LSAME( JOBVT, 'S' )
      WNTVAS = WNTVA .OR. WNTVS
      WNTVO = LSAME( JOBVT, 'O' )
      WNTVN = LSAME( JOBVT, 'N' )
      MINWRK = 1
      LQUERY = ( LWORK.EQ.-1 )
*
      IF( .NOT.( WNTUA .OR. WNTUS .OR. WNTUO .OR. WNTUN ) ) THEN
         INFO = -1
      ELSE IF( .NOT.( WNTVA .OR. WNTVS .OR. WNTVO .OR. WNTVN ) .OR.
     $         ( WNTVO .AND. WNTUO ) ) THEN
         INFO = -2
      ELSE IF( M.LT.0 ) THEN
         INFO = -3
      ELSE IF( N.LT.0 ) THEN
         INFO = -4
      ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
         INFO = -6
      ELSE IF( LDU.LT.1 .OR. ( WNTUAS .AND. LDU.LT.M ) ) THEN
         INFO = -9
      ELSE IF( LDVT.LT.1 .OR. ( WNTVA .AND. LDVT.LT.N ) .OR.
     $         ( WNTVS .AND. LDVT.LT.MINMN ) ) THEN
         INFO = -11
      END IF
*
*     Compute workspace
*      (Note: Comments in the code beginning "Workspace:" describe the
*       minimal amount of workspace needed at that point in the code,
*       as well as the preferred amount for good performance.
*       NB refers to the optimal block size for the immediately
*       following subroutine, as returned by ILAENV.)
*
      IF( INFO.EQ.0 .AND. ( LWORK.GE.1 .OR. LQUERY ) .AND. M.GT.0 .AND.
     $   N.GT.0 ) THEN
         IF( M.GE.N ) THEN
*
*           Compute space needed for SBDSQR
*
            BDSPAC = 5*N
            IF( M.GE.MNTHR ) THEN
               IF( WNTUN ) THEN
*
*                 Path 1 (M much larger than N, JOBU='N')
*
                  MAXWRK = N + N*ILAENV( 1, 'SGEQRF', ' ', M, N, -1,
     $                     -1 )
                  MAXWRK = MAX( MAXWRK, 3*N+2*N*
     $                     ILAENV( 1, 'SGEBRD', ' ', N, N, -1, -1 ) )
                  IF( WNTVO .OR. WNTVAS )
     $               MAXWRK = MAX( MAXWRK, 3*N+( N-1 )*
     $                        ILAENV( 1, 'SORGBR', 'P', N, N, N, -1 ) )
                  MAXWRK = MAX( MAXWRK, BDSPAC )
                  MINWRK = MAX( 4*N, BDSPAC )
                  MAXWRK = MAX( MAXWRK, MINWRK )
               ELSE IF( WNTUO .AND. WNTVN ) THEN
*
*                 Path 2 (M much larger than N, JOBU='O', JOBVT='N')
*
                  WRKBL = N + N*ILAENV( 1, 'SGEQRF', ' ', M, N, -1, -1 )
                  WRKBL = MAX( WRKBL, N+N*ILAENV( 1, 'SORGQR', ' ', M,
     $                    N, N, -1 ) )
                  WRKBL = MAX( WRKBL, 3*N+2*N*
     $                    ILAENV( 1, 'SGEBRD', ' ', N, N, -1, -1 ) )
                  WRKBL = MAX( WRKBL, 3*N+N*
     $                    ILAENV( 1, 'SORGBR', 'Q', N, N, N, -1 ) )
                  WRKBL = MAX( WRKBL, BDSPAC )
                  MAXWRK = MAX( N*N+WRKBL, N*N+M*N+N )
                  MINWRK = MAX( 3*N+M, BDSPAC )
                  MAXWRK = MAX( MAXWRK, MINWRK )
               ELSE IF( WNTUO .AND. WNTVAS ) THEN
*
*                 Path 3 (M much larger than N, JOBU='O', JOBVT='S' or
*                 'A')
*
                  WRKBL = N + N*ILAENV( 1, 'SGEQRF', ' ', M, N, -1, -1 )
                  WRKBL = MAX( WRKBL, N+N*ILAENV( 1, 'SORGQR', ' ', M,
     $                    N, N, -1 ) )
                  WRKBL = MAX( WRKBL, 3*N+2*N*
     $                    ILAENV( 1, 'SGEBRD', ' ', N, N, -1, -1 ) )
                  WRKBL = MAX( WRKBL, 3*N+N*
     $                    ILAENV( 1, 'SORGBR', 'Q', N, N, N, -1 ) )
                  WRKBL = MAX( WRKBL, 3*N+( N-1 )*
     $                    ILAENV( 1, 'SORGBR', 'P', N, N, N, -1 ) )
                  WRKBL = MAX( WRKBL, BDSPAC )
                  MAXWRK = MAX( N*N+WRKBL, N*N+M*N+N )
                  MINWRK = MAX( 3*N+M, BDSPAC )
                  MAXWRK = MAX( MAXWRK, MINWRK )
               ELSE IF( WNTUS .AND. WNTVN ) THEN
*
*                 Path 4 (M much larger than N, JOBU='S', JOBVT='N')
*
                  WRKBL = N + N*ILAENV( 1, 'SGEQRF', ' ', M, N, -1, -1 )
                  WRKBL = MAX( WRKBL, N+N*ILAENV( 1, 'SORGQR', ' ', M,
     $                    N, N, -1 ) )
                  WRKBL = MAX( WRKBL, 3*N+2*N*
     $                    ILAENV( 1, 'SGEBRD', ' ', N, N, -1, -1 ) )
                  WRKBL = MAX( WRKBL, 3*N+N*
     $                    ILAENV( 1, 'SORGBR', 'Q', N, N, N, -1 ) )
                  WRKBL = MAX( WRKBL, BDSPAC )
                  MAXWRK = N*N + WRKBL
                  MINWRK = MAX( 3*N+M, BDSPAC )
                  MAXWRK = MAX( MAXWRK, MINWRK )
               ELSE IF( WNTUS .AND. WNTVO ) THEN
*
*                 Path 5 (M much larger than N, JOBU='S', JOBVT='O')
*
                  WRKBL = N + N*ILAENV( 1, 'SGEQRF', ' ', M, N, -1, -1 )
                  WRKBL = MAX( WRKBL, N+N*ILAENV( 1, 'SORGQR', ' ', M,
     $                    N, N, -1 ) )
                  WRKBL = MAX( WRKBL, 3*N+2*N*
     $                    ILAENV( 1, 'SGEBRD', ' ', N, N, -1, -1 ) )
                  WRKBL = MAX( WRKBL, 3*N+N*
     $                    ILAENV( 1, 'SORGBR', 'Q', N, N, N, -1 ) )
                  WRKBL = MAX( WRKBL, 3*N+( N-1 )*
     $                    ILAENV( 1, 'SORGBR', 'P', N, N, N, -1 ) )
                  WRKBL = MAX( WRKBL, BDSPAC )
                  MAXWRK = 2*N*N + WRKBL
                  MINWRK = MAX( 3*N+M, BDSPAC )
                  MAXWRK = MAX( MAXWRK, MINWRK )
               ELSE IF( WNTUS .AND. WNTVAS ) THEN
*
*                 Path 6 (M much larger than N, JOBU='S', JOBVT='S' or
*                 'A')
*
                  WRKBL = N + N*ILAENV( 1, 'SGEQRF', ' ', M, N, -1, -1 )
                  WRKBL = MAX( WRKBL, N+N*ILAENV( 1, 'SORGQR', ' ', M,
     $                    N, N, -1 ) )
                  WRKBL = MAX( WRKBL, 3*N+2*N*
     $                    ILAENV( 1, 'SGEBRD', ' ', N, N, -1, -1 ) )
                  WRKBL = MAX( WRKBL, 3*N+N*
     $                    ILAENV( 1, 'SORGBR', 'Q', N, N, N, -1 ) )
                  WRKBL = MAX( WRKBL, 3*N+( N-1 )*
     $                    ILAENV( 1, 'SORGBR', 'P', N, N, N, -1 ) )
                  WRKBL = MAX( WRKBL, BDSPAC )
                  MAXWRK = N*N + WRKBL
                  MINWRK = MAX( 3*N+M, BDSPAC )
                  MAXWRK = MAX( MAXWRK, MINWRK )
               ELSE IF( WNTUA .AND. WNTVN ) THEN
*
*                 Path 7 (M much larger than N, JOBU='A', JOBVT='N')
*
                  WRKBL = N + N*ILAENV( 1, 'SGEQRF', ' ', M, N, -1, -1 )
                  WRKBL = MAX( WRKBL, N+M*ILAENV( 1, 'SORGQR', ' ', M,
     $                    M, N, -1 ) )
                  WRKBL = MAX( WRKBL, 3*N+2*N*
     $                    ILAENV( 1, 'SGEBRD', ' ', N, N, -1, -1 ) )
                  WRKBL = MAX( WRKBL, 3*N+N*
     $                    ILAENV( 1, 'SORGBR', 'Q', N, N, N, -1 ) )
                  WRKBL = MAX( WRKBL, BDSPAC )
                  MAXWRK = N*N + WRKBL
                  MINWRK = MAX( 3*N+M, BDSPAC )
                  MAXWRK = MAX( MAXWRK, MINWRK )
               ELSE IF( WNTUA .AND. WNTVO ) THEN
*
*                 Path 8 (M much larger than N, JOBU='A', JOBVT='O')
*
                  WRKBL = N + N*ILAENV( 1, 'SGEQRF', ' ', M, N, -1, -1 )
                  WRKBL = MAX( WRKBL, N+M*ILAENV( 1, 'SORGQR', ' ', M,
     $                    M, N, -1 ) )
                  WRKBL = MAX( WRKBL, 3*N+2*N*
     $                    ILAENV( 1, 'SGEBRD', ' ', N, N, -1, -1 ) )
                  WRKBL = MAX( WRKBL, 3*N+N*
     $                    ILAENV( 1, 'SORGBR', 'Q', N, N, N, -1 ) )
                  WRKBL = MAX( WRKBL, 3*N+( N-1 )*
     $                    ILAENV( 1, 'SORGBR', 'P', N, N, N, -1 ) )
                  WRKBL = MAX( WRKBL, BDSPAC )
                  MAXWRK = 2*N*N + WRKBL
                  MINWRK = MAX( 3*N+M, BDSPAC )
                  MAXWRK = MAX( MAXWRK, MINWRK )
               ELSE IF( WNTUA .AND. WNTVAS ) THEN
*
*                 Path 9 (M much larger than N, JOBU='A', JOBVT='S' or
*                 'A')
*
                  WRKBL = N + N*ILAENV( 1, 'SGEQRF', ' ', M, N, -1, -1 )
                  WRKBL = MAX( WRKBL, N+M*ILAENV( 1, 'SORGQR', ' ', M,
     $                    M, N, -1 ) )
                  WRKBL = MAX( WRKBL, 3*N+2*N*
     $                    ILAENV( 1, 'SGEBRD', ' ', N, N, -1, -1 ) )
                  WRKBL = MAX( WRKBL, 3*N+N*
     $                    ILAENV( 1, 'SORGBR', 'Q', N, N, N, -1 ) )
                  WRKBL = MAX( WRKBL, 3*N+( N-1 )*
     $                    ILAENV( 1, 'SORGBR', 'P', N, N, N, -1 ) )
                  WRKBL = MAX( WRKBL, BDSPAC )
                  MAXWRK = N*N + WRKBL
                  MINWRK = MAX( 3*N+M, BDSPAC )
                  MAXWRK = MAX( MAXWRK, MINWRK )
               END IF
            ELSE
*
*              Path 10 (M at least N, but not much larger)
*
               MAXWRK = 3*N + ( M+N )*ILAENV( 1, 'SGEBRD', ' ', M, N,
     $                  -1, -1 )
               IF( WNTUS .OR. WNTUO )
     $            MAXWRK = MAX( MAXWRK, 3*N+N*
     $                     ILAENV( 1, 'SORGBR', 'Q', M, N, N, -1 ) )
               IF( WNTUA )
     $            MAXWRK = MAX( MAXWRK, 3*N+M*
     $                     ILAENV( 1, 'SORGBR', 'Q', M, M, N, -1 ) )
               IF( .NOT.WNTVN )
     $            MAXWRK = MAX( MAXWRK, 3*N+( N-1 )*
     $                     ILAENV( 1, 'SORGBR', 'P', N, N, N, -1 ) )
               MAXWRK = MAX( MAXWRK, BDSPAC )
               MINWRK = MAX( 3*N+M, BDSPAC )
               MAXWRK = MAX( MAXWRK, MINWRK )
            END IF
         ELSE
*
*           Compute space needed for SBDSQR
*
            BDSPAC = 5*M
            IF( N.GE.MNTHR ) THEN
               IF( WNTVN ) THEN
*
*                 Path 1t(N much larger than M, JOBVT='N')
*
                  MAXWRK = M + M*ILAENV( 1, 'SGELQF', ' ', M, N, -1,
     $                     -1 )
                  MAXWRK = MAX( MAXWRK, 3*M+2*M*
     $                     ILAENV( 1, 'SGEBRD', ' ', M, M, -1, -1 ) )
                  IF( WNTUO .OR. WNTUAS )
     $               MAXWRK = MAX( MAXWRK, 3*M+M*
     $                        ILAENV( 1, 'SORGBR', 'Q', M, M, M, -1 ) )
                  MAXWRK = MAX( MAXWRK, BDSPAC )
                  MINWRK = MAX( 4*M, BDSPAC )
                  MAXWRK = MAX( MAXWRK, MINWRK )
               ELSE IF( WNTVO .AND. WNTUN ) THEN
*
*                 Path 2t(N much larger than M, JOBU='N', JOBVT='O')
*
                  WRKBL = M + M*ILAENV( 1, 'SGELQF', ' ', M, N, -1, -1 )
                  WRKBL = MAX( WRKBL, M+M*ILAENV( 1, 'SORGLQ', ' ', M,
     $                    N, M, -1 ) )
                  WRKBL = MAX( WRKBL, 3*M+2*M*
     $                    ILAENV( 1, 'SGEBRD', ' ', M, M, -1, -1 ) )
                  WRKBL = MAX( WRKBL, 3*M+( M-1 )*
     $                    ILAENV( 1, 'SORGBR', 'P', M, M, M, -1 ) )
                  WRKBL = MAX( WRKBL, BDSPAC )
                  MAXWRK = MAX( M*M+WRKBL, M*M+M*N+M )
                  MINWRK = MAX( 3*M+N, BDSPAC )
                  MAXWRK = MAX( MAXWRK, MINWRK )
               ELSE IF( WNTVO .AND. WNTUAS ) THEN
*
*                 Path 3t(N much larger than M, JOBU='S' or 'A',
*                 JOBVT='O')
*
                  WRKBL = M + M*ILAENV( 1, 'SGELQF', ' ', M, N, -1, -1 )
                  WRKBL = MAX( WRKBL, M+M*ILAENV( 1, 'SORGLQ', ' ', M,
     $                    N, M, -1 ) )
                  WRKBL = MAX( WRKBL, 3*M+2*M*
     $                    ILAENV( 1, 'SGEBRD', ' ', M, M, -1, -1 ) )
                  WRKBL = MAX( WRKBL, 3*M+( M-1 )*
     $                    ILAENV( 1, 'SORGBR', 'P', M, M, M, -1 ) )
                  WRKBL = MAX( WRKBL, 3*M+M*
     $                    ILAENV( 1, 'SORGBR', 'Q', M, M, M, -1 ) )
                  WRKBL = MAX( WRKBL, BDSPAC )
                  MAXWRK = MAX( M*M+WRKBL, M*M+M*N+M )
                  MINWRK = MAX( 3*M+N, BDSPAC )
                  MAXWRK = MAX( MAXWRK, MINWRK )
               ELSE IF( WNTVS .AND. WNTUN ) THEN
*
*                 Path 4t(N much larger than M, JOBU='N', JOBVT='S')
*
                  WRKBL = M + M*ILAENV( 1, 'SGELQF', ' ', M, N, -1, -1 )
                  WRKBL = MAX( WRKBL, M+M*ILAENV( 1, 'SORGLQ', ' ', M,
     $                    N, M, -1 ) )
                  WRKBL = MAX( WRKBL, 3*M+2*M*
     $                    ILAENV( 1, 'SGEBRD', ' ', M, M, -1, -1 ) )
                  WRKBL = MAX( WRKBL, 3*M+( M-1 )*
     $                    ILAENV( 1, 'SORGBR', 'P', M, M, M, -1 ) )
                  WRKBL = MAX( WRKBL, BDSPAC )
                  MAXWRK = M*M + WRKBL
                  MINWRK = MAX( 3*M+N, BDSPAC )
                  MAXWRK = MAX( MAXWRK, MINWRK )
               ELSE IF( WNTVS .AND. WNTUO ) THEN
*
*                 Path 5t(N much larger than M, JOBU='O', JOBVT='S')
*
                  WRKBL = M + M*ILAENV( 1, 'SGELQF', ' ', M, N, -1, -1 )
                  WRKBL = MAX( WRKBL, M+M*ILAENV( 1, 'SORGLQ', ' ', M,
     $                    N, M, -1 ) )
                  WRKBL = MAX( WRKBL, 3*M+2*M*
     $                    ILAENV( 1, 'SGEBRD', ' ', M, M, -1, -1 ) )
                  WRKBL = MAX( WRKBL, 3*M+( M-1 )*
     $                    ILAENV( 1, 'SORGBR', 'P', M, M, M, -1 ) )
                  WRKBL = MAX( WRKBL, 3*M+M*
     $                    ILAENV( 1, 'SORGBR', 'Q', M, M, M, -1 ) )
                  WRKBL = MAX( WRKBL, BDSPAC )
                  MAXWRK = 2*M*M + WRKBL
                  MINWRK = MAX( 3*M+N, BDSPAC )
                  MAXWRK = MAX( MAXWRK, MINWRK )
               ELSE IF( WNTVS .AND. WNTUAS ) THEN
*
*                 Path 6t(N much larger than M, JOBU='S' or 'A',
*                 JOBVT='S')
*
                  WRKBL = M + M*ILAENV( 1, 'SGELQF', ' ', M, N, -1, -1 )
                  WRKBL = MAX( WRKBL, M+M*ILAENV( 1, 'SORGLQ', ' ', M,
     $                    N, M, -1 ) )
                  WRKBL = MAX( WRKBL, 3*M+2*M*
     $                    ILAENV( 1, 'SGEBRD', ' ', M, M, -1, -1 ) )
                  WRKBL = MAX( WRKBL, 3*M+( M-1 )*
     $                    ILAENV( 1, 'SORGBR', 'P', M, M, M, -1 ) )
                  WRKBL = MAX( WRKBL, 3*M+M*
     $                    ILAENV( 1, 'SORGBR', 'Q', M, M, M, -1 ) )
                  WRKBL = MAX( WRKBL, BDSPAC )
                  MAXWRK = M*M + WRKBL
                  MINWRK = MAX( 3*M+N, BDSPAC )
                  MAXWRK = MAX( MAXWRK, MINWRK )
               ELSE IF( WNTVA .AND. WNTUN ) THEN
*
*                 Path 7t(N much larger than M, JOBU='N', JOBVT='A')
*
                  WRKBL = M + M*ILAENV( 1, 'SGELQF', ' ', M, N, -1, -1 )
                  WRKBL = MAX( WRKBL, M+N*ILAENV( 1, 'SORGLQ', ' ', N,
     $                    N, M, -1 ) )
                  WRKBL = MAX( WRKBL, 3*M+2*M*
     $                    ILAENV( 1, 'SGEBRD', ' ', M, M, -1, -1 ) )
                  WRKBL = MAX( WRKBL, 3*M+( M-1 )*
     $                    ILAENV( 1, 'SORGBR', 'P', M, M, M, -1 ) )
                  WRKBL = MAX( WRKBL, BDSPAC )
                  MAXWRK = M*M + WRKBL
                  MINWRK = MAX( 3*M+N, BDSPAC )
                  MAXWRK = MAX( MAXWRK, MINWRK )
               ELSE IF( WNTVA .AND. WNTUO ) THEN
*
*                 Path 8t(N much larger than M, JOBU='O', JOBVT='A')
*
                  WRKBL = M + M*ILAENV( 1, 'SGELQF', ' ', M, N, -1, -1 )
                  WRKBL = MAX( WRKBL, M+N*ILAENV( 1, 'SORGLQ', ' ', N,
     $                    N, M, -1 ) )
                  WRKBL = MAX( WRKBL, 3*M+2*M*
     $                    ILAENV( 1, 'SGEBRD', ' ', M, M, -1, -1 ) )
                  WRKBL = MAX( WRKBL, 3*M+( M-1 )*
     $                    ILAENV( 1, 'SORGBR', 'P', M, M, M, -1 ) )
                  WRKBL = MAX( WRKBL, 3*M+M*
     $                    ILAENV( 1, 'SORGBR', 'Q', M, M, M, -1 ) )
                  WRKBL = MAX( WRKBL, BDSPAC )
                  MAXWRK = 2*M*M + WRKBL
                  MINWRK = MAX( 3*M+N, BDSPAC )
                  MAXWRK = MAX( MAXWRK, MINWRK )
               ELSE IF( WNTVA .AND. WNTUAS ) THEN
*
*                 Path 9t(N much larger than M, JOBU='S' or 'A',
*                 JOBVT='A')
*
                  WRKBL = M + M*ILAENV( 1, 'SGELQF', ' ', M, N, -1, -1 )
                  WRKBL = MAX( WRKBL, M+N*ILAENV( 1, 'SORGLQ', ' ', N,
     $                    N, M, -1 ) )
                  WRKBL = MAX( WRKBL, 3*M+2*M*
     $                    ILAENV( 1, 'SGEBRD', ' ', M, M, -1, -1 ) )
                  WRKBL = MAX( WRKBL, 3*M+( M-1 )*
     $                    ILAENV( 1, 'SORGBR', 'P', M, M, M, -1 ) )
                  WRKBL = MAX( WRKBL, 3*M+M*
     $                    ILAENV( 1, 'SORGBR', 'Q', M, M, M, -1 ) )
                  WRKBL = MAX( WRKBL, BDSPAC )
                  MAXWRK = M*M + WRKBL
                  MINWRK = MAX( 3*M+N, BDSPAC )
                  MAXWRK = MAX( MAXWRK, MINWRK )
               END IF
            ELSE
*
*              Path 10t(N greater than M, but not much larger)
*
               MAXWRK = 3*M + ( M+N )*ILAENV( 1, 'SGEBRD', ' ', M, N,
     $                  -1, -1 )
               IF( WNTVS .OR. WNTVO )
     $            MAXWRK = MAX( MAXWRK, 3*M+M*
     $                     ILAENV( 1, 'SORGBR', 'P', M, N, M, -1 ) )
               IF( WNTVA )
     $            MAXWRK = MAX( MAXWRK, 3*M+N*
     $                     ILAENV( 1, 'SORGBR', 'P', N, N, M, -1 ) )
               IF( .NOT.WNTUN )
     $            MAXWRK = MAX( MAXWRK, 3*M+( M-1 )*
     $                     ILAENV( 1, 'SORGBR', 'Q', M, M, M, -1 ) )
               MAXWRK = MAX( MAXWRK, BDSPAC )
               MINWRK = MAX( 3*M+N, BDSPAC )
               MAXWRK = MAX( MAXWRK, MINWRK )
            END IF
         END IF
         WORK( 1 ) = MAXWRK
      END IF
*
      IF( LWORK.LT.MINWRK .AND. .NOT.LQUERY ) THEN
         INFO = -13
      END IF
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'SGESVD', -INFO )
         RETURN
      ELSE IF( LQUERY ) THEN
         RETURN
      END IF
*
*     Quick return if possible
*
      IF( M.EQ.0 .OR. N.EQ.0 ) THEN
         IF( LWORK.GE.1 )
     $      WORK( 1 ) = ONE
         RETURN
      END IF
*
*     Get machine constants
*
      EPS = SLAMCH( 'P' )
      SMLNUM = SQRT( SLAMCH( 'S' ) ) / EPS
      BIGNUM = ONE / SMLNUM
*
*     Scale A if max element outside range [SMLNUM,BIGNUM]
*
      ANRM = SLANGE( 'M', M, N, A, LDA, DUM )
      ISCL = 0
      IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
         ISCL = 1
         CALL SLASCL( 'G', 0, 0, ANRM, SMLNUM, M, N, A, LDA, IERR )
      ELSE IF( ANRM.GT.BIGNUM ) THEN
         ISCL = 1
         CALL SLASCL( 'G', 0, 0, ANRM, BIGNUM, M, N, A, LDA, IERR )
      END IF
*
      IF( M.GE.N ) THEN
*
*        A has at least as many rows as columns. If A has sufficiently
*        more rows than columns, first reduce using the QR
*        decomposition (if sufficient workspace available)
*
         IF( M.GE.MNTHR ) THEN
*
            IF( WNTUN ) THEN
*
*              Path 1 (M much larger than N, JOBU='N')
*              No left singular vectors to be computed
*
               ITAU = 1
               IWORK = ITAU + N
*
*              Compute A=Q*R
*              (Workspace: need 2*N, prefer N+N*NB)
*
               CALL SGEQRF( M, N, A, LDA, WORK( ITAU ), WORK( IWORK ),
     $                      LWORK-IWORK+1, IERR )
*
*              Zero out below R
*
               CALL SLASET( 'L', N-1, N-1, ZERO, ZERO, A( 2, 1 ), LDA )
               IE = 1
               ITAUQ = IE + N
               ITAUP = ITAUQ + N
               IWORK = ITAUP + N
*
*              Bidiagonalize R in A
*              (Workspace: need 4*N, prefer 3*N+2*N*NB)
*
               CALL SGEBRD( N, N, A, LDA, S, WORK( IE ), WORK( ITAUQ ),
     $                      WORK( ITAUP ), WORK( IWORK ), LWORK-IWORK+1,
     $                      IERR )
               NCVT = 0
               IF( WNTVO .OR. WNTVAS ) THEN
*
*                 If right singular vectors desired, generate P'.
*                 (Workspace: need 4*N-1, prefer 3*N+(N-1)*NB)
*
                  CALL SORGBR( 'P', N, N, N, A, LDA, WORK( ITAUP ),
     $                         WORK( IWORK ), LWORK-IWORK+1, IERR )
                  NCVT = N
               END IF
               IWORK = IE + N
*
*              Perform bidiagonal QR iteration, computing right
*              singular vectors of A in A if desired
*              (Workspace: need BDSPAC)
*
               CALL SBDSQR( 'U', N, NCVT, 0, 0, S, WORK( IE ), A, LDA,
     $                      DUM, 1, DUM, 1, WORK( IWORK ), INFO )
*
*              If right singular vectors desired in VT, copy them there
*
               IF( WNTVAS )
     $            CALL SLACPY( 'F', N, N, A, LDA, VT, LDVT )
*
            ELSE IF( WNTUO .AND. WNTVN ) THEN
*
*              Path 2 (M much larger than N, JOBU='O', JOBVT='N')
*              N left singular vectors to be overwritten on A and
*              no right singular vectors to be computed
*
               IF( LWORK.GE.N*N+MAX( 4*N, BDSPAC ) ) THEN
*
*                 Sufficient workspace for a fast algorithm
*
                  IR = 1
                  IF( LWORK.GE.MAX( WRKBL, LDA*N+N )+LDA*N ) THEN
*
*                    WORK(IU) is LDA by N, WORK(IR) is LDA by N
*
                     LDWRKU = LDA
                     LDWRKR = LDA
                  ELSE IF( LWORK.GE.MAX( WRKBL, LDA*N+N )+N*N ) THEN
*
*                    WORK(IU) is LDA by N, WORK(IR) is N by N
*
                     LDWRKU = LDA
                     LDWRKR = N
                  ELSE
*
*                    WORK(IU) is LDWRKU by N, WORK(IR) is N by N
*
                     LDWRKU = ( LWORK-N*N-N ) / N
                     LDWRKR = N
                  END IF
                  ITAU = IR + LDWRKR*N
                  IWORK = ITAU + N
*
*                 Compute A=Q*R
*                 (Workspace: need N*N+2*N, prefer N*N+N+N*NB)
*
                  CALL SGEQRF( M, N, A, LDA, WORK( ITAU ),
     $                         WORK( IWORK ), LWORK-IWORK+1, IERR )
*
*                 Copy R to WORK(IR) and zero out below it
*
                  CALL SLACPY( 'U', N, N, A, LDA, WORK( IR ), LDWRKR )
                  CALL SLASET( 'L', N-1, N-1, ZERO, ZERO, WORK( IR+1 ),
     $                         LDWRKR )
*
*                 Generate Q in A
*                 (Workspace: need N*N+2*N, prefer N*N+N+N*NB)
*
                  CALL SORGQR( M, N, N, A, LDA, WORK( ITAU ),
     $                         WORK( IWORK ), LWORK-IWORK+1, IERR )
                  IE = ITAU
                  ITAUQ = IE + N
                  ITAUP = ITAUQ + N
                  IWORK = ITAUP + N
*
*                 Bidiagonalize R in WORK(IR)
*                 (Workspace: need N*N+4*N, prefer N*N+3*N+2*N*NB)
*
                  CALL SGEBRD( N, N, WORK( IR ), LDWRKR, S, WORK( IE ),
     $                         WORK( ITAUQ ), WORK( ITAUP ),
     $                         WORK( IWORK ), LWORK-IWORK+1, IERR )
*
*                 Generate left vectors bidiagonalizing R
*                 (Workspace: need N*N+4*N, prefer N*N+3*N+N*NB)
*
                  CALL SORGBR( 'Q', N, N, N, WORK( IR ), LDWRKR,
     $                         WORK( ITAUQ ), WORK( IWORK ),
     $                         LWORK-IWORK+1, IERR )
                  IWORK = IE + N
*
*                 Perform bidiagonal QR iteration, computing left
*                 singular vectors of R in WORK(IR)
*                 (Workspace: need N*N+BDSPAC)
*
                  CALL SBDSQR( 'U', N, 0, N, 0, S, WORK( IE ), DUM, 1,
     $                         WORK( IR ), LDWRKR, DUM, 1,
     $                         WORK( IWORK ), INFO )
                  IU = IE + N
*
*                 Multiply Q in A by left singular vectors of R in
*                 WORK(IR), storing result in WORK(IU) and copying to A
*                 (Workspace: need N*N+2*N, prefer N*N+M*N+N)
*
                  DO 10 I = 1, M, LDWRKU
                     CHUNK = MIN( M-I+1, LDWRKU )
                     CALL SGEMM( 'N', 'N', CHUNK, N, N, ONE, A( I, 1 ),
     $                           LDA, WORK( IR ), LDWRKR, ZERO,
     $                           WORK( IU ), LDWRKU )
                     CALL SLACPY( 'F', CHUNK, N, WORK( IU ), LDWRKU,
     $                            A( I, 1 ), LDA )
   10             CONTINUE
*
               ELSE
*
*                 Insufficient workspace for a fast algorithm
*
                  IE = 1
                  ITAUQ = IE + N
                  ITAUP = ITAUQ + N
                  IWORK = ITAUP + N
*
*                 Bidiagonalize A
*                 (Workspace: need 3*N+M, prefer 3*N+(M+N)*NB)
*
                  CALL SGEBRD( M, N, A, LDA, S, WORK( IE ),
     $                         WORK( ITAUQ ), WORK( ITAUP ),
     $                         WORK( IWORK ), LWORK-IWORK+1, IERR )
*
*                 Generate left vectors bidiagonalizing A
*                 (Workspace: need 4*N, prefer 3*N+N*NB)
*
                  CALL SORGBR( 'Q', M, N, N, A, LDA, WORK( ITAUQ ),
     $                         WORK( IWORK ), LWORK-IWORK+1, IERR )
                  IWORK = IE + N
*
*                 Perform bidiagonal QR iteration, computing left
*                 singular vectors of A in A
*                 (Workspace: need BDSPAC)
*
                  CALL SBDSQR( 'U', N, 0, M, 0, S, WORK( IE ), DUM, 1,
     $                         A, LDA, DUM, 1, WORK( IWORK ), INFO )
*
               END IF
*
            ELSE IF( WNTUO .AND. WNTVAS ) THEN
*
*              Path 3 (M much larger than N, JOBU='O', JOBVT='S' or 'A')
*              N left singular vectors to be overwritten on A and
*              N right singular vectors to be computed in VT
*
               IF( LWORK.GE.N*N+MAX( 4*N, BDSPAC ) ) THEN
*
*                 Sufficient workspace for a fast algorithm
*
                  IR = 1
                  IF( LWORK.GE.MAX( WRKBL, LDA*N+N )+LDA*N ) THEN
*
*                    WORK(IU) is LDA by N and WORK(IR) is LDA by N
*
                     LDWRKU = LDA
                     LDWRKR = LDA
                  ELSE IF( LWORK.GE.MAX( WRKBL, LDA*N+N )+N*N ) THEN
*
*                    WORK(IU) is LDA by N and WORK(IR) is N by N
*
                     LDWRKU = LDA
                     LDWRKR = N
                  ELSE
*
*                    WORK(IU) is LDWRKU by N and WORK(IR) is N by N
*
                     LDWRKU = ( LWORK-N*N-N ) / N
                     LDWRKR = N
                  END IF
                  ITAU = IR + LDWRKR*N
                  IWORK = ITAU + N
*
*                 Compute A=Q*R
*                 (Workspace: need N*N+2*N, prefer N*N+N+N*NB)
*
                  CALL SGEQRF( M, N, A, LDA, WORK( ITAU ),
     $                         WORK( IWORK ), LWORK-IWORK+1, IERR )
*
*                 Copy R to VT, zeroing out below it
*
                  CALL SLACPY( 'U', N, N, A, LDA, VT, LDVT )
                  CALL SLASET( 'L', N-1, N-1, ZERO, ZERO, VT( 2, 1 ),
     $                         LDVT )
*
*                 Generate Q in A
*                 (Workspace: need N*N+2*N, prefer N*N+N+N*NB)
*
                  CALL SORGQR( M, N, N, A, LDA, WORK( ITAU ),
     $                         WORK( IWORK ), LWORK-IWORK+1, IERR )
                  IE = ITAU
                  ITAUQ = IE + N
                  ITAUP = ITAUQ + N
                  IWORK = ITAUP + N
*
*                 Bidiagonalize R in VT, copying result to WORK(IR)
*                 (Workspace: need N*N+4*N, prefer N*N+3*N+2*N*NB)
*
                  CALL SGEBRD( N, N, VT, LDVT, S, WORK( IE ),
     $                         WORK( ITAUQ ), WORK( ITAUP ),
     $                         WORK( IWORK ), LWORK-IWORK+1, IERR )
                  CALL SLACPY( 'L', N, N, VT, LDVT, WORK( IR ), LDWRKR )
*
*                 Generate left vectors bidiagonalizing R in WORK(IR)
*                 (Workspace: need N*N+4*N, prefer N*N+3*N+N*NB)
*
                  CALL SORGBR( 'Q', N, N, N, WORK( IR ), LDWRKR,
     $                         WORK( ITAUQ ), WORK( IWORK ),
     $                         LWORK-IWORK+1, IERR )
*
*                 Generate right vectors bidiagonalizing R in VT
*                 (Workspace: need N*N+4*N-1, prefer N*N+3*N+(N-1)*NB)
*
                  CALL SORGBR( 'P', N, N, N, VT, LDVT, WORK( ITAUP ),
     $                         WORK( IWORK ), LWORK-IWORK+1, IERR )
                  IWORK = IE + N
*
*                 Perform bidiagonal QR iteration, computing left
*                 singular vectors of R in WORK(IR) and computing right
*                 singular vectors of R in VT
*                 (Workspace: need N*N+BDSPAC)
*
                  CALL SBDSQR( 'U', N, N, N, 0, S, WORK( IE ), VT, LDVT,
     $                         WORK( IR ), LDWRKR, DUM, 1,
     $                         WORK( IWORK ), INFO )
                  IU = IE + N
*
*                 Multiply Q in A by left singular vectors of R in
*                 WORK(IR), storing result in WORK(IU) and copying to A
*                 (Workspace: need N*N+2*N, prefer N*N+M*N+N)
*
                  DO 20 I = 1, M, LDWRKU
                     CHUNK = MIN( M-I+1, LDWRKU )
                     CALL SGEMM( 'N', 'N', CHUNK, N, N, ONE, A( I, 1 ),
     $                           LDA, WORK( IR ), LDWRKR, ZERO,
     $                           WORK( IU ), LDWRKU )
                     CALL SLACPY( 'F', CHUNK, N, WORK( IU ), LDWRKU,
     $                            A( I, 1 ), LDA )
   20             CONTINUE
*
               ELSE
*
*                 Insufficient workspace for a fast algorithm
*
                  ITAU = 1
                  IWORK = ITAU + N
*
*                 Compute A=Q*R
*                 (Workspace: need 2*N, prefer N+N*NB)
*
                  CALL SGEQRF( M, N, A, LDA, WORK( ITAU ),
     $                         WORK( IWORK ), LWORK-IWORK+1, IERR )
*
*                 Copy R to VT, zeroing out below it
*
                  CALL SLACPY( 'U', N, N, A, LDA, VT, LDVT )
                  CALL SLASET( 'L', N-1, N-1, ZERO, ZERO, VT( 2, 1 ),
     $                         LDVT )
*
*                 Generate Q in A
*                 (Workspace: need 2*N, prefer N+N*NB)
*
                  CALL SORGQR( M, N, N, A, LDA, WORK( ITAU ),
     $                         WORK( IWORK ), LWORK-IWORK+1, IERR )
                  IE = ITAU
                  ITAUQ = IE + N
                  ITAUP = ITAUQ + N
                  IWORK = ITAUP + N
*
*                 Bidiagonalize R in VT
*                 (Workspace: need 4*N, prefer 3*N+2*N*NB)
*
                  CALL SGEBRD( N, N, VT, LDVT, S, WORK( IE ),
     $                         WORK( ITAUQ ), WORK( ITAUP ),
     $                         WORK( IWORK ), LWORK-IWORK+1, IERR )
*
*                 Multiply Q in A by left vectors bidiagonalizing R
*                 (Workspace: need 3*N+M, prefer 3*N+M*NB)
*
                  CALL SORMBR( 'Q', 'R', 'N', M, N, N, VT, LDVT,
     $                         WORK( ITAUQ ), A, LDA, WORK( IWORK ),
     $                         LWORK-IWORK+1, IERR )
*
*                 Generate right vectors bidiagonalizing R in VT
*                 (Workspace: need 4*N-1, prefer 3*N+(N-1)*NB)
*
                  CALL SORGBR( 'P', N, N, N, VT, LDVT, WORK( ITAUP ),
     $                         WORK( IWORK ), LWORK-IWORK+1, IERR )
                  IWORK = IE + N
*
*                 Perform bidiagonal QR iteration, computing left
*                 singular vectors of A in A and computing right
*                 singular vectors of A in VT
*                 (Workspace: need BDSPAC)
*
                  CALL SBDSQR( 'U', N, N, M, 0, S, WORK( IE ), VT, LDVT,
     $                         A, LDA, DUM, 1, WORK( IWORK ), INFO )
*
               END IF
*
            ELSE IF( WNTUS ) THEN
*
               IF( WNTVN ) THEN
*
*                 Path 4 (M much larger than N, JOBU='S', JOBVT='N')
*                 N left singular vectors to be computed in U and
*                 no right singular vectors to be computed
*
                  IF( LWORK.GE.N*N+MAX( 4*N, BDSPAC ) ) THEN
*
*                    Sufficient workspace for a fast algorithm
*
                     IR = 1
                     IF( LWORK.GE.WRKBL+LDA*N ) THEN
*
*                       WORK(IR) is LDA by N
*
                        LDWRKR = LDA
                     ELSE
*
*                       WORK(IR) is N by N
*
                        LDWRKR = N
                     END IF
                     ITAU = IR + LDWRKR*N
                     IWORK = ITAU + N
*
*                    Compute A=Q*R
*                    (Workspace: need N*N+2*N, prefer N*N+N+N*NB)
*
                     CALL SGEQRF( M, N, A, LDA, WORK( ITAU ),
     $                            WORK( IWORK ), LWORK-IWORK+1, IERR )
*
*                    Copy R to WORK(IR), zeroing out below it
*
                     CALL SLACPY( 'U', N, N, A, LDA, WORK( IR ),
     $                            LDWRKR )
                     CALL SLASET( 'L', N-1, N-1, ZERO, ZERO,
     $                            WORK( IR+1 ), LDWRKR )
*
*                    Generate Q in A
*                    (Workspace: need N*N+2*N, prefer N*N+N+N*NB)
*
                     CALL SORGQR( M, N, N, A, LDA, WORK( ITAU ),
     $                            WORK( IWORK ), LWORK-IWORK+1, IERR )
                     IE = ITAU
                     ITAUQ = IE + N
                     ITAUP = ITAUQ + N
                     IWORK = ITAUP + N
*
*                    Bidiagonalize R in WORK(IR)
*                    (Workspace: need N*N+4*N, prefer N*N+3*N+2*N*NB)
*
                     CALL SGEBRD( N, N, WORK( IR ), LDWRKR, S,
     $                            WORK( IE ), WORK( ITAUQ ),
     $                            WORK( ITAUP ), WORK( IWORK ),
     $                            LWORK-IWORK+1, IERR )
*
*                    Generate left vectors bidiagonalizing R in WORK(IR)
*                    (Workspace: need N*N+4*N, prefer N*N+3*N+N*NB)
*
                     CALL SORGBR( 'Q', N, N, N, WORK( IR ), LDWRKR,
     $                            WORK( ITAUQ ), WORK( IWORK ),
     $                            LWORK-IWORK+1, IERR )
                     IWORK = IE + N
*
*                    Perform bidiagonal QR iteration, computing left
*                    singular vectors of R in WORK(IR)
*                    (Workspace: need N*N+BDSPAC)
*
                     CALL SBDSQR( 'U', N, 0, N, 0, S, WORK( IE ), DUM,
     $                            1, WORK( IR ), LDWRKR, DUM, 1,
     $                            WORK( IWORK ), INFO )
*
*                    Multiply Q in A by left singular vectors of R in
*                    WORK(IR), storing result in U
*                    (Workspace: need N*N)
*
                     CALL SGEMM( 'N', 'N', M, N, N, ONE, A, LDA,
     $                           WORK( IR ), LDWRKR, ZERO, U, LDU )
*
                  ELSE
*
*                    Insufficient workspace for a fast algorithm
*
                     ITAU = 1
                     IWORK = ITAU + N
*
*                    Compute A=Q*R, copying result to U
*                    (Workspace: need 2*N, prefer N+N*NB)
*
                     CALL SGEQRF( M, N, A, LDA, WORK( ITAU ),
     $                            WORK( IWORK ), LWORK-IWORK+1, IERR )
                     CALL SLACPY( 'L', M, N, A, LDA, U, LDU )
*
*                    Generate Q in U
*                    (Workspace: need 2*N, prefer N+N*NB)
*
                     CALL SORGQR( M, N, N, U, LDU, WORK( ITAU ),
     $                            WORK( IWORK ), LWORK-IWORK+1, IERR )
                     IE = ITAU
                     ITAUQ = IE + N
                     ITAUP = ITAUQ + N
                     IWORK = ITAUP + N
*
*                    Zero out below R in A
*
                     CALL SLASET( 'L', N-1, N-1, ZERO, ZERO, A( 2, 1 ),
     $                            LDA )
*
*                    Bidiagonalize R in A
*                    (Workspace: need 4*N, prefer 3*N+2*N*NB)
*
                     CALL SGEBRD( N, N, A, LDA, S, WORK( IE ),
     $                            WORK( ITAUQ ), WORK( ITAUP ),
     $                            WORK( IWORK ), LWORK-IWORK+1, IERR )
*
*                    Multiply Q in U by left vectors bidiagonalizing R
*                    (Workspace: need 3*N+M, prefer 3*N+M*NB)
*
                     CALL SORMBR( 'Q', 'R', 'N', M, N, N, A, LDA,
     $                            WORK( ITAUQ ), U, LDU, WORK( IWORK ),
     $                            LWORK-IWORK+1, IERR )
                     IWORK = IE + N
*
*                    Perform bidiagonal QR iteration, computing left
*                    singular vectors of A in U
*                    (Workspace: need BDSPAC)
*
                     CALL SBDSQR( 'U', N, 0, M, 0, S, WORK( IE ), DUM,
     $                            1, U, LDU, DUM, 1, WORK( IWORK ),
     $                            INFO )
*
                  END IF
*
               ELSE IF( WNTVO ) THEN
*
*                 Path 5 (M much larger than N, JOBU='S', JOBVT='O')
*                 N left singular vectors to be computed in U and
*                 N right singular vectors to be overwritten on A
*
                  IF( LWORK.GE.2*N*N+MAX( 4*N, BDSPAC ) ) THEN
*
*                    Sufficient workspace for a fast algorithm
*
                     IU = 1
                     IF( LWORK.GE.WRKBL+2*LDA*N ) THEN
*
*                       WORK(IU) is LDA by N and WORK(IR) is LDA by N
*
                        LDWRKU = LDA
                        IR = IU + LDWRKU*N
                        LDWRKR = LDA
                     ELSE IF( LWORK.GE.WRKBL+( LDA+N )*N ) THEN
*
*                       WORK(IU) is LDA by N and WORK(IR) is N by N
*
                        LDWRKU = LDA
                        IR = IU + LDWRKU*N
                        LDWRKR = N
                     ELSE
*
*                       WORK(IU) is N by N and WORK(IR) is N by N
*
                        LDWRKU = N
                        IR = IU + LDWRKU*N
                        LDWRKR = N
                     END IF
                     ITAU = IR + LDWRKR*N
                     IWORK = ITAU + N
*
*                    Compute A=Q*R
*                    (Workspace: need 2*N*N+2*N, prefer 2*N*N+N+N*NB)
*
                     CALL SGEQRF( M, N, A, LDA, WORK( ITAU ),
     $                            WORK( IWORK ), LWORK-IWORK+1, IERR )
*
*                    Copy R to WORK(IU), zeroing out below it
*
                     CALL SLACPY( 'U', N, N, A, LDA, WORK( IU ),
     $                            LDWRKU )
                     CALL SLASET( 'L', N-1, N-1, ZERO, ZERO,
     $                            WORK( IU+1 ), LDWRKU )
*
*                    Generate Q in A
*                    (Workspace: need 2*N*N+2*N, prefer 2*N*N+N+N*NB)
*
                     CALL SORGQR( M, N, N, A, LDA, WORK( ITAU ),
     $                            WORK( IWORK ), LWORK-IWORK+1, IERR )
                     IE = ITAU
                     ITAUQ = IE + N
                     ITAUP = ITAUQ + N
                     IWORK = ITAUP + N
*
*                    Bidiagonalize R in WORK(IU), copying result to
*                    WORK(IR)
*                    (Workspace: need 2*N*N+4*N,
*                                prefer 2*N*N+3*N+2*N*NB)
*
                     CALL SGEBRD( N, N, WORK( IU ), LDWRKU, S,
     $                            WORK( IE ), WORK( ITAUQ ),
     $                            WORK( ITAUP ), WORK( IWORK ),
     $                            LWORK-IWORK+1, IERR )
                     CALL SLACPY( 'U', N, N, WORK( IU ), LDWRKU,
     $                            WORK( IR ), LDWRKR )
*
*                    Generate left bidiagonalizing vectors in WORK(IU)
*                    (Workspace: need 2*N*N+4*N, prefer 2*N*N+3*N+N*NB)
*
                     CALL SORGBR( 'Q', N, N, N, WORK( IU ), LDWRKU,
     $                            WORK( ITAUQ ), WORK( IWORK ),
     $                            LWORK-IWORK+1, IERR )
*
*                    Generate right bidiagonalizing vectors in WORK(IR)
*                    (Workspace: need 2*N*N+4*N-1,
*                                prefer 2*N*N+3*N+(N-1)*NB)
*
                     CALL SORGBR( 'P', N, N, N, WORK( IR ), LDWRKR,
     $                            WORK( ITAUP ), WORK( IWORK ),
     $                            LWORK-IWORK+1, IERR )
                     IWORK = IE + N
*
*                    Perform bidiagonal QR iteration, computing left
*                    singular vectors of R in WORK(IU) and computing
*                    right singular vectors of R in WORK(IR)
*                    (Workspace: need 2*N*N+BDSPAC)
*
                     CALL SBDSQR( 'U', N, N, N, 0, S, WORK( IE ),
     $                            WORK( IR ), LDWRKR, WORK( IU ),
     $                            LDWRKU, DUM, 1, WORK( IWORK ), INFO )
*
*                    Multiply Q in A by left singular vectors of R in
*                    WORK(IU), storing result in U
*                    (Workspace: need N*N)
*
                     CALL SGEMM( 'N', 'N', M, N, N, ONE, A, LDA,
     $                           WORK( IU ), LDWRKU, ZERO, U, LDU )
*
*                    Copy right singular vectors of R to A
*                    (Workspace: need N*N)
*
                     CALL SLACPY( 'F', N, N, WORK( IR ), LDWRKR, A,
     $                            LDA )
*
                  ELSE
*
*                    Insufficient workspace for a fast algorithm
*
                     ITAU = 1
                     IWORK = ITAU + N
*
*                    Compute A=Q*R, copying result to U
*                    (Workspace: need 2*N, prefer N+N*NB)
*
                     CALL SGEQRF( M, N, A, LDA, WORK( ITAU ),
     $                            WORK( IWORK ), LWORK-IWORK+1, IERR )
                     CALL SLACPY( 'L', M, N, A, LDA, U, LDU )
*
*                    Generate Q in U
*                    (Workspace: need 2*N, prefer N+N*NB)
*
                     CALL SORGQR( M, N, N, U, LDU, WORK( ITAU ),
     $                            WORK( IWORK ), LWORK-IWORK+1, IERR )
                     IE = ITAU
                     ITAUQ = IE + N
                     ITAUP = ITAUQ + N
                     IWORK = ITAUP + N
*
*                    Zero out below R in A
*
                     CALL SLASET( 'L', N-1, N-1, ZERO, ZERO, A( 2, 1 ),
     $                            LDA )
*
*                    Bidiagonalize R in A
*                    (Workspace: need 4*N, prefer 3*N+2*N*NB)
*
                     CALL SGEBRD( N, N, A, LDA, S, WORK( IE ),
     $                            WORK( ITAUQ ), WORK( ITAUP ),
     $                            WORK( IWORK ), LWORK-IWORK+1, IERR )
*
*                    Multiply Q in U by left vectors bidiagonalizing R
*                    (Workspace: need 3*N+M, prefer 3*N+M*NB)
*
                     CALL SORMBR( 'Q', 'R', 'N', M, N, N, A, LDA,
     $                            WORK( ITAUQ ), U, LDU, WORK( IWORK ),
     $                            LWORK-IWORK+1, IERR )
*
*                    Generate right vectors bidiagonalizing R in A
*                    (Workspace: need 4*N-1, prefer 3*N+(N-1)*NB)
*
                     CALL SORGBR( 'P', N, N, N, A, LDA, WORK( ITAUP ),
     $                            WORK( IWORK ), LWORK-IWORK+1, IERR )
                     IWORK = IE + N
*
*                    Perform bidiagonal QR iteration, computing left
*                    singular vectors of A in U and computing right
*                    singular vectors of A in A
*                    (Workspace: need BDSPAC)
*
                     CALL SBDSQR( 'U', N, N, M, 0, S, WORK( IE ), A,
     $                            LDA, U, LDU, DUM, 1, WORK( IWORK ),
     $                            INFO )
*
                  END IF
*
               ELSE IF( WNTVAS ) THEN
*
*                 Path 6 (M much larger than N, JOBU='S', JOBVT='S'
*                         or 'A')
*                 N left singular vectors to be computed in U and
*                 N right singular vectors to be computed in VT
*
                  IF( LWORK.GE.N*N+MAX( 4*N, BDSPAC ) ) THEN
*
*                    Sufficient workspace for a fast algorithm
*
                     IU = 1
                     IF( LWORK.GE.WRKBL+LDA*N ) THEN
*
*                       WORK(IU) is LDA by N
*
                        LDWRKU = LDA
                     ELSE
*
*                       WORK(IU) is N by N
*
                        LDWRKU = N
                     END IF
                     ITAU = IU + LDWRKU*N
                     IWORK = ITAU + N
*
*                    Compute A=Q*R
*                    (Workspace: need N*N+2*N, prefer N*N+N+N*NB)
*
                     CALL SGEQRF( M, N, A, LDA, WORK( ITAU ),
     $                            WORK( IWORK ), LWORK-IWORK+1, IERR )
*
*                    Copy R to WORK(IU), zeroing out below it
*
                     CALL SLACPY( 'U', N, N, A, LDA, WORK( IU ),
     $                            LDWRKU )
                     CALL SLASET( 'L', N-1, N-1, ZERO, ZERO,
     $                            WORK( IU+1 ), LDWRKU )
*
*                    Generate Q in A
*                    (Workspace: need N*N+2*N, prefer N*N+N+N*NB)
*
                     CALL SORGQR( M, N, N, A, LDA, WORK( ITAU ),
     $                            WORK( IWORK ), LWORK-IWORK+1, IERR )
                     IE = ITAU
                     ITAUQ = IE + N
                     ITAUP = ITAUQ + N
                     IWORK = ITAUP + N
*
*                    Bidiagonalize R in WORK(IU), copying result to VT
*                    (Workspace: need N*N+4*N, prefer N*N+3*N+2*N*NB)
*
                     CALL SGEBRD( N, N, WORK( IU ), LDWRKU, S,
     $                            WORK( IE ), WORK( ITAUQ ),
     $                            WORK( ITAUP ), WORK( IWORK ),
     $                            LWORK-IWORK+1, IERR )
                     CALL SLACPY( 'U', N, N, WORK( IU ), LDWRKU, VT,
     $                            LDVT )
*
*                    Generate left bidiagonalizing vectors in WORK(IU)
*                    (Workspace: need N*N+4*N, prefer N*N+3*N+N*NB)
*
                     CALL SORGBR( 'Q', N, N, N, WORK( IU ), LDWRKU,
     $                            WORK( ITAUQ ), WORK( IWORK ),
     $                            LWORK-IWORK+1, IERR )
*
*                    Generate right bidiagonalizing vectors in VT
*                    (Workspace: need N*N+4*N-1,
*                                prefer N*N+3*N+(N-1)*NB)
*
                     CALL SORGBR( 'P', N, N, N, VT, LDVT, WORK( ITAUP ),
     $                            WORK( IWORK ), LWORK-IWORK+1, IERR )
                     IWORK = IE + N
*
*                    Perform bidiagonal QR iteration, computing left
*                    singular vectors of R in WORK(IU) and computing
*                    right singular vectors of R in VT
*                    (Workspace: need N*N+BDSPAC)
*
                     CALL SBDSQR( 'U', N, N, N, 0, S, WORK( IE ), VT,
     $                            LDVT, WORK( IU ), LDWRKU, DUM, 1,
     $                            WORK( IWORK ), INFO )
*
*                    Multiply Q in A by left singular vectors of R in
*                    WORK(IU), storing result in U
*                    (Workspace: need N*N)
*
                     CALL SGEMM( 'N', 'N', M, N, N, ONE, A, LDA,
     $                           WORK( IU ), LDWRKU, ZERO, U, LDU )
*
                  ELSE
*
*                    Insufficient workspace for a fast algorithm
*
                     ITAU = 1
                     IWORK = ITAU + N
*
*                    Compute A=Q*R, copying result to U
*                    (Workspace: need 2*N, prefer N+N*NB)
*
                     CALL SGEQRF( M, N, A, LDA, WORK( ITAU ),
     $                            WORK( IWORK ), LWORK-IWORK+1, IERR )
                     CALL SLACPY( 'L', M, N, A, LDA, U, LDU )
*
*                    Generate Q in U
*                    (Workspace: need 2*N, prefer N+N*NB)
*
                     CALL SORGQR( M, N, N, U, LDU, WORK( ITAU ),
     $                            WORK( IWORK ), LWORK-IWORK+1, IERR )
*
*                    Copy R to VT, zeroing out below it
*
                     CALL SLACPY( 'U', N, N, A, LDA, VT, LDVT )
                     CALL SLASET( 'L', N-1, N-1, ZERO, ZERO, VT( 2, 1 ),
     $                            LDVT )
                     IE = ITAU
                     ITAUQ = IE + N
                     ITAUP = ITAUQ + N
                     IWORK = ITAUP + N
*
*                    Bidiagonalize R in VT
*                    (Workspace: need 4*N, prefer 3*N+2*N*NB)
*
                     CALL SGEBRD( N, N, VT, LDVT, S, WORK( IE ),
     $                            WORK( ITAUQ ), WORK( ITAUP ),
     $                            WORK( IWORK ), LWORK-IWORK+1, IERR )
*
*                    Multiply Q in U by left bidiagonalizing vectors
*                    in VT
*                    (Workspace: need 3*N+M, prefer 3*N+M*NB)
*
                     CALL SORMBR( 'Q', 'R', 'N', M, N, N, VT, LDVT,
     $                            WORK( ITAUQ ), U, LDU, WORK( IWORK ),
     $                            LWORK-IWORK+1, IERR )
*
*                    Generate right bidiagonalizing vectors in VT
*                    (Workspace: need 4*N-1, prefer 3*N+(N-1)*NB)
*
                     CALL SORGBR( 'P', N, N, N, VT, LDVT, WORK( ITAUP ),
     $                            WORK( IWORK ), LWORK-IWORK+1, IERR )
                     IWORK = IE + N
*
*                    Perform bidiagonal QR iteration, computing left
*                    singular vectors of A in U and computing right
*                    singular vectors of A in VT
*                    (Workspace: need BDSPAC)
*
                     CALL SBDSQR( 'U', N, N, M, 0, S, WORK( IE ), VT,
     $                            LDVT, U, LDU, DUM, 1, WORK( IWORK ),
     $                            INFO )
*
                  END IF
*
               END IF
*
            ELSE IF( WNTUA ) THEN
*
               IF( WNTVN ) THEN
*
*                 Path 7 (M much larger than N, JOBU='A', JOBVT='N')
*                 M left singular vectors to be computed in U and
*                 no right singular vectors to be computed
*
                  IF( LWORK.GE.N*N+MAX( N+M, 4*N, BDSPAC ) ) THEN
*
*                    Sufficient workspace for a fast algorithm
*
                     IR = 1
                     IF( LWORK.GE.WRKBL+LDA*N ) THEN
*
*                       WORK(IR) is LDA by N
*
                        LDWRKR = LDA
                     ELSE
*
*                       WORK(IR) is N by N
*
                        LDWRKR = N
                     END IF
                     ITAU = IR + LDWRKR*N
                     IWORK = ITAU + N
*
*                    Compute A=Q*R, copying result to U
*                    (Workspace: need N*N+2*N, prefer N*N+N+N*NB)
*
                     CALL SGEQRF( M, N, A, LDA, WORK( ITAU ),
     $                            WORK( IWORK ), LWORK-IWORK+1, IERR )
                     CALL SLACPY( 'L', M, N, A, LDA, U, LDU )
*
*                    Copy R to WORK(IR), zeroing out below it
*
                     CALL SLACPY( 'U', N, N, A, LDA, WORK( IR ),
     $                            LDWRKR )
                     CALL SLASET( 'L', N-1, N-1, ZERO, ZERO,
     $                            WORK( IR+1 ), LDWRKR )
*
*                    Generate Q in U
*                    (Workspace: need N*N+N+M, prefer N*N+N+M*NB)
*
                     CALL SORGQR( M, M, N, U, LDU, WORK( ITAU ),
     $                            WORK( IWORK ), LWORK-IWORK+1, IERR )
                     IE = ITAU
                     ITAUQ = IE + N
                     ITAUP = ITAUQ + N
                     IWORK = ITAUP + N
*
*                    Bidiagonalize R in WORK(IR)
*                    (Workspace: need N*N+4*N, prefer N*N+3*N+2*N*NB)
*
                     CALL SGEBRD( N, N, WORK( IR ), LDWRKR, S,
     $                            WORK( IE ), WORK( ITAUQ ),
     $                            WORK( ITAUP ), WORK( IWORK ),
     $                            LWORK-IWORK+1, IERR )
*
*                    Generate left bidiagonalizing vectors in WORK(IR)
*                    (Workspace: need N*N+4*N, prefer N*N+3*N+N*NB)
*
                     CALL SORGBR( 'Q', N, N, N, WORK( IR ), LDWRKR,
     $                            WORK( ITAUQ ), WORK( IWORK ),
     $                            LWORK-IWORK+1, IERR )
                     IWORK = IE + N
*
*                    Perform bidiagonal QR iteration, computing left
*                    singular vectors of R in WORK(IR)
*                    (Workspace: need N*N+BDSPAC)
*
                     CALL SBDSQR( 'U', N, 0, N, 0, S, WORK( IE ), DUM,
     $                            1, WORK( IR ), LDWRKR, DUM, 1,
     $                            WORK( IWORK ), INFO )
*
*                    Multiply Q in U by left singular vectors of R in
*                    WORK(IR), storing result in A
*                    (Workspace: need N*N)
*
                     CALL SGEMM( 'N', 'N', M, N, N, ONE, U, LDU,
     $                           WORK( IR ), LDWRKR, ZERO, A, LDA )
*
*                    Copy left singular vectors of A from A to U
*
                     CALL SLACPY( 'F', M, N, A, LDA, U, LDU )
*
                  ELSE
*
*                    Insufficient workspace for a fast algorithm
*
                     ITAU = 1
                     IWORK = ITAU + N
*
*                    Compute A=Q*R, copying result to U
*                    (Workspace: need 2*N, prefer N+N*NB)
*
                     CALL SGEQRF( M, N, A, LDA, WORK( ITAU ),
     $                            WORK( IWORK ), LWORK-IWORK+1, IERR )
                     CALL SLACPY( 'L', M, N, A, LDA, U, LDU )
*
*                    Generate Q in U
*                    (Workspace: need N+M, prefer N+M*NB)
*
                     CALL SORGQR( M, M, N, U, LDU, WORK( ITAU ),
     $                            WORK( IWORK ), LWORK-IWORK+1, IERR )
                     IE = ITAU
                     ITAUQ = IE + N
                     ITAUP = ITAUQ + N
                     IWORK = ITAUP + N
*
*                    Zero out below R in A
*
                     CALL SLASET( 'L', N-1, N-1, ZERO, ZERO, A( 2, 1 ),
     $                            LDA )
*
*                    Bidiagonalize R in A
*                    (Workspace: need 4*N, prefer 3*N+2*N*NB)
*
                     CALL SGEBRD( N, N, A, LDA, S, WORK( IE ),
     $                            WORK( ITAUQ ), WORK( ITAUP ),
     $                            WORK( IWORK ), LWORK-IWORK+1, IERR )
*
*                    Multiply Q in U by left bidiagonalizing vectors
*                    in A
*                    (Workspace: need 3*N+M, prefer 3*N+M*NB)
*
                     CALL SORMBR( 'Q', 'R', 'N', M, N, N, A, LDA,
     $                            WORK( ITAUQ ), U, LDU, WORK( IWORK ),
     $                            LWORK-IWORK+1, IERR )
                     IWORK = IE + N
*
*                    Perform bidiagonal QR iteration, computing left
*                    singular vectors of A in U
*                    (Workspace: need BDSPAC)
*
                     CALL SBDSQR( 'U', N, 0, M, 0, S, WORK( IE ), DUM,
     $                            1, U, LDU, DUM, 1, WORK( IWORK ),
     $                            INFO )
*
                  END IF
*
               ELSE IF( WNTVO ) THEN
*
*                 Path 8 (M much larger than N, JOBU='A', JOBVT='O')
*                 M left singular vectors to be computed in U and
*                 N right singular vectors to be overwritten on A
*
                  IF( LWORK.GE.2*N*N+MAX( N+M, 4*N, BDSPAC ) ) THEN
*
*                    Sufficient workspace for a fast algorithm
*
                     IU = 1
                     IF( LWORK.GE.WRKBL+2*LDA*N ) THEN
*
*                       WORK(IU) is LDA by N and WORK(IR) is LDA by N
*
                        LDWRKU = LDA
                        IR = IU + LDWRKU*N
                        LDWRKR = LDA
                     ELSE IF( LWORK.GE.WRKBL+( LDA+N )*N ) THEN
*
*                       WORK(IU) is LDA by N and WORK(IR) is N by N
*
                        LDWRKU = LDA
                        IR = IU + LDWRKU*N
                        LDWRKR = N
                     ELSE
*
*                       WORK(IU) is N by N and WORK(IR) is N by N
*
                        LDWRKU = N
                        IR = IU + LDWRKU*N
                        LDWRKR = N
                     END IF
                     ITAU = IR + LDWRKR*N
                     IWORK = ITAU + N
*
*                    Compute A=Q*R, copying result to U
*                    (Workspace: need 2*N*N+2*N, prefer 2*N*N+N+N*NB)
*
                     CALL SGEQRF( M, N, A, LDA, WORK( ITAU ),
     $                            WORK( IWORK ), LWORK-IWORK+1, IERR )
                     CALL SLACPY( 'L', M, N, A, LDA, U, LDU )
*
*                    Generate Q in U
*                    (Workspace: need 2*N*N+N+M, prefer 2*N*N+N+M*NB)
*
                     CALL SORGQR( M, M, N, U, LDU, WORK( ITAU ),
     $                            WORK( IWORK ), LWORK-IWORK+1, IERR )
*
*                    Copy R to WORK(IU), zeroing out below it
*
                     CALL SLACPY( 'U', N, N, A, LDA, WORK( IU ),
     $                            LDWRKU )
                     CALL SLASET( 'L', N-1, N-1, ZERO, ZERO,
     $                            WORK( IU+1 ), LDWRKU )
                     IE = ITAU
                     ITAUQ = IE + N
                     ITAUP = ITAUQ + N
                     IWORK = ITAUP + N
*
*                    Bidiagonalize R in WORK(IU), copying result to
*                    WORK(IR)
*                    (Workspace: need 2*N*N+4*N,
*                                prefer 2*N*N+3*N+2*N*NB)
*
                     CALL SGEBRD( N, N, WORK( IU ), LDWRKU, S,
     $                            WORK( IE ), WORK( ITAUQ ),
     $                            WORK( ITAUP ), WORK( IWORK ),
     $                            LWORK-IWORK+1, IERR )
                     CALL SLACPY( 'U', N, N, WORK( IU ), LDWRKU,
     $                            WORK( IR ), LDWRKR )
*
*                    Generate left bidiagonalizing vectors in WORK(IU)
*                    (Workspace: need 2*N*N+4*N, prefer 2*N*N+3*N+N*NB)
*
                     CALL SORGBR( 'Q', N, N, N, WORK( IU ), LDWRKU,
     $                            WORK( ITAUQ ), WORK( IWORK ),
     $                            LWORK-IWORK+1, IERR )
*
*                    Generate right bidiagonalizing vectors in WORK(IR)
*                    (Workspace: need 2*N*N+4*N-1,
*                                prefer 2*N*N+3*N+(N-1)*NB)
*
                     CALL SORGBR( 'P', N, N, N, WORK( IR ), LDWRKR,
     $                            WORK( ITAUP ), WORK( IWORK ),
     $                            LWORK-IWORK+1, IERR )
                     IWORK = IE + N
*
*                    Perform bidiagonal QR iteration, computing left
*                    singular vectors of R in WORK(IU) and computing
*                    right singular vectors of R in WORK(IR)
*                    (Workspace: need 2*N*N+BDSPAC)
*
                     CALL SBDSQR( 'U', N, N, N, 0, S, WORK( IE ),
     $                            WORK( IR ), LDWRKR, WORK( IU ),
     $                            LDWRKU, DUM, 1, WORK( IWORK ), INFO )
*
*                    Multiply Q in U by left singular vectors of R in
*                    WORK(IU), storing result in A
*                    (Workspace: need N*N)
*
                     CALL SGEMM( 'N', 'N', M, N, N, ONE, U, LDU,
     $                           WORK( IU ), LDWRKU, ZERO, A, LDA )
*
*                    Copy left singular vectors of A from A to U
*
                     CALL SLACPY( 'F', M, N, A, LDA, U, LDU )
*
*                    Copy right singular vectors of R from WORK(IR) to A
*
                     CALL SLACPY( 'F', N, N, WORK( IR ), LDWRKR, A,
     $                            LDA )
*
                  ELSE
*
*                    Insufficient workspace for a fast algorithm
*
                     ITAU = 1
                     IWORK = ITAU + N
*
*                    Compute A=Q*R, copying result to U
*                    (Workspace: need 2*N, prefer N+N*NB)
*
                     CALL SGEQRF( M, N, A, LDA, WORK( ITAU ),
     $                            WORK( IWORK ), LWORK-IWORK+1, IERR )
                     CALL SLACPY( 'L', M, N, A, LDA, U, LDU )
*
*                    Generate Q in U
*                    (Workspace: need N+M, prefer N+M*NB)
*
                     CALL SORGQR( M, M, N, U, LDU, WORK( ITAU ),
     $                            WORK( IWORK ), LWORK-IWORK+1, IERR )
                     IE = ITAU
                     ITAUQ = IE + N
                     ITAUP = ITAUQ + N
                     IWORK = ITAUP + N
*
*                    Zero out below R in A
*
                     CALL SLASET( 'L', N-1, N-1, ZERO, ZERO, A( 2, 1 ),
     $                            LDA )
*
*                    Bidiagonalize R in A
*                    (Workspace: need 4*N, prefer 3*N+2*N*NB)
*
                     CALL SGEBRD( N, N, A, LDA, S, WORK( IE ),
     $                            WORK( ITAUQ ), WORK( ITAUP ),
     $                            WORK( IWORK ), LWORK-IWORK+1, IERR )
*
*                    Multiply Q in U by left bidiagonalizing vectors
*                    in A
*                    (Workspace: need 3*N+M, prefer 3*N+M*NB)
*
                     CALL SORMBR( 'Q', 'R', 'N', M, N, N, A, LDA,
     $                            WORK( ITAUQ ), U, LDU, WORK( IWORK ),
     $                            LWORK-IWORK+1, IERR )
*
*                    Generate right bidiagonalizing vectors in A
*                    (Workspace: need 4*N-1, prefer 3*N+(N-1)*NB)
*
                     CALL SORGBR( 'P', N, N, N, A, LDA, WORK( ITAUP ),
     $                            WORK( IWORK ), LWORK-IWORK+1, IERR )
                     IWORK = IE + N
*
*                    Perform bidiagonal QR iteration, computing left
*                    singular vectors of A in U and computing right
*                    singular vectors of A in A
*                    (Workspace: need BDSPAC)
*
                     CALL SBDSQR( 'U', N, N, M, 0, S, WORK( IE ), A,
     $                            LDA, U, LDU, DUM, 1, WORK( IWORK ),
     $                            INFO )
*
                  END IF
*
               ELSE IF( WNTVAS ) THEN
*
*                 Path 9 (M much larger than N, JOBU='A', JOBVT='S'
*                         or 'A')
*                 M left singular vectors to be computed in U and
*                 N right singular vectors to be computed in VT
*
                  IF( LWORK.GE.N*N+MAX( N+M, 4*N, BDSPAC ) ) THEN
*
*                    Sufficient workspace for a fast algorithm
*
                     IU = 1
                     IF( LWORK.GE.WRKBL+LDA*N ) THEN
*
*                       WORK(IU) is LDA by N
*
                        LDWRKU = LDA
                     ELSE
*
*                       WORK(IU) is N by N
*
                        LDWRKU = N
                     END IF
                     ITAU = IU + LDWRKU*N
                     IWORK = ITAU + N
*
*                    Compute A=Q*R, copying result to U
*                    (Workspace: need N*N+2*N, prefer N*N+N+N*NB)
*
                     CALL SGEQRF( M, N, A, LDA, WORK( ITAU ),
     $                            WORK( IWORK ), LWORK-IWORK+1, IERR )
                     CALL SLACPY( 'L', M, N, A, LDA, U, LDU )
*
*                    Generate Q in U
*                    (Workspace: need N*N+N+M, prefer N*N+N+M*NB)
*
                     CALL SORGQR( M, M, N, U, LDU, WORK( ITAU ),
     $                            WORK( IWORK ), LWORK-IWORK+1, IERR )
*
*                    Copy R to WORK(IU), zeroing out below it
*
                     CALL SLACPY( 'U', N, N, A, LDA, WORK( IU ),
     $                            LDWRKU )
                     CALL SLASET( 'L', N-1, N-1, ZERO, ZERO,
     $                            WORK( IU+1 ), LDWRKU )
                     IE = ITAU
                     ITAUQ = IE + N
                     ITAUP = ITAUQ + N
                     IWORK = ITAUP + N
*
*                    Bidiagonalize R in WORK(IU), copying result to VT
*                    (Workspace: need N*N+4*N, prefer N*N+3*N+2*N*NB)
*
                     CALL SGEBRD( N, N, WORK( IU ), LDWRKU, S,
     $                            WORK( IE ), WORK( ITAUQ ),
     $                            WORK( ITAUP ), WORK( IWORK ),
     $                            LWORK-IWORK+1, IERR )
                     CALL SLACPY( 'U', N, N, WORK( IU ), LDWRKU, VT,
     $                            LDVT )
*
*                    Generate left bidiagonalizing vectors in WORK(IU)
*                    (Workspace: need N*N+4*N, prefer N*N+3*N+N*NB)
*
                     CALL SORGBR( 'Q', N, N, N, WORK( IU ), LDWRKU,
     $                            WORK( ITAUQ ), WORK( IWORK ),
     $                            LWORK-IWORK+1, IERR )
*
*                    Generate right bidiagonalizing vectors in VT
*                    (Workspace: need N*N+4*N-1,
*                                prefer N*N+3*N+(N-1)*NB)
*
                     CALL SORGBR( 'P', N, N, N, VT, LDVT, WORK( ITAUP ),
     $                            WORK( IWORK ), LWORK-IWORK+1, IERR )
                     IWORK = IE + N
*
*                    Perform bidiagonal QR iteration, computing left
*                    singular vectors of R in WORK(IU) and computing
*                    right singular vectors of R in VT
*                    (Workspace: need N*N+BDSPAC)
*
                     CALL SBDSQR( 'U', N, N, N, 0, S, WORK( IE ), VT,
     $                            LDVT, WORK( IU ), LDWRKU, DUM, 1,
     $                            WORK( IWORK ), INFO )
*
*                    Multiply Q in U by left singular vectors of R in
*                    WORK(IU), storing result in A
*                    (Workspace: need N*N)
*
                     CALL SGEMM( 'N', 'N', M, N, N, ONE, U, LDU,
     $                           WORK( IU ), LDWRKU, ZERO, A, LDA )
*
*                    Copy left singular vectors of A from A to U
*
                     CALL SLACPY( 'F', M, N, A, LDA, U, LDU )
*
                  ELSE
*
*                    Insufficient workspace for a fast algorithm
*
                     ITAU = 1
                     IWORK = ITAU + N
*
*                    Compute A=Q*R, copying result to U
*                    (Workspace: need 2*N, prefer N+N*NB)
*
                     CALL SGEQRF( M, N, A, LDA, WORK( ITAU ),
     $                            WORK( IWORK ), LWORK-IWORK+1, IERR )
                     CALL SLACPY( 'L', M, N, A, LDA, U, LDU )
*
*                    Generate Q in U
*                    (Workspace: need N+M, prefer N+M*NB)
*
                     CALL SORGQR( M, M, N, U, LDU, WORK( ITAU ),
     $                            WORK( IWORK ), LWORK-IWORK+1, IERR )
*
*                    Copy R from A to VT, zeroing out below it
*
                     CALL SLACPY( 'U', N, N, A, LDA, VT, LDVT )
                     CALL SLASET( 'L', N-1, N-1, ZERO, ZERO, VT( 2, 1 ),
     $                            LDVT )
                     IE = ITAU
                     ITAUQ = IE + N
                     ITAUP = ITAUQ + N
                     IWORK = ITAUP + N
*
*                    Bidiagonalize R in VT
*                    (Workspace: need 4*N, prefer 3*N+2*N*NB)
*
                     CALL SGEBRD( N, N, VT, LDVT, S, WORK( IE ),
     $                            WORK( ITAUQ ), WORK( ITAUP ),
     $                            WORK( IWORK ), LWORK-IWORK+1, IERR )
*
*                    Multiply Q in U by left bidiagonalizing vectors
*                    in VT
*                    (Workspace: need 3*N+M, prefer 3*N+M*NB)
*
                     CALL SORMBR( 'Q', 'R', 'N', M, N, N, VT, LDVT,
     $                            WORK( ITAUQ ), U, LDU, WORK( IWORK ),
     $                            LWORK-IWORK+1, IERR )
*
*                    Generate right bidiagonalizing vectors in VT
*                    (Workspace: need 4*N-1, prefer 3*N+(N-1)*NB)
*
                     CALL SORGBR( 'P', N, N, N, VT, LDVT, WORK( ITAUP ),
     $                            WORK( IWORK ), LWORK-IWORK+1, IERR )
                     IWORK = IE + N
*
*                    Perform bidiagonal QR iteration, computing left
*                    singular vectors of A in U and computing right
*                    singular vectors of A in VT
*                    (Workspace: need BDSPAC)
*
                     CALL SBDSQR( 'U', N, N, M, 0, S, WORK( IE ), VT,
     $                            LDVT, U, LDU, DUM, 1, WORK( IWORK ),
     $                            INFO )
*
                  END IF
*
               END IF
*
            END IF
*
         ELSE
*
*           M .LT. MNTHR
*
*           Path 10 (M at least N, but not much larger)
*           Reduce to bidiagonal form without QR decomposition
*
            IE = 1
            ITAUQ = IE + N
            ITAUP = ITAUQ + N
            IWORK = ITAUP + N
*
*           Bidiagonalize A
*           (Workspace: need 3*N+M, prefer 3*N+(M+N)*NB)
*
            CALL SGEBRD( M, N, A, LDA, S, WORK( IE ), WORK( ITAUQ ),
     $                   WORK( ITAUP ), WORK( IWORK ), LWORK-IWORK+1,
     $                   IERR )
            IF( WNTUAS ) THEN
*
*              If left singular vectors desired in U, copy result to U
*              and generate left bidiagonalizing vectors in U
*              (Workspace: need 3*N+NCU, prefer 3*N+NCU*NB)
*
               CALL SLACPY( 'L', M, N, A, LDA, U, LDU )
               IF( WNTUS )
     $            NCU = N
               IF( WNTUA )
     $            NCU = M
               CALL SORGBR( 'Q', M, NCU, N, U, LDU, WORK( ITAUQ ),
     $                      WORK( IWORK ), LWORK-IWORK+1, IERR )
            END IF
            IF( WNTVAS ) THEN
*
*              If right singular vectors desired in VT, copy result to
*              VT and generate right bidiagonalizing vectors in VT
*              (Workspace: need 4*N-1, prefer 3*N+(N-1)*NB)
*
               CALL SLACPY( 'U', N, N, A, LDA, VT, LDVT )
               CALL SORGBR( 'P', N, N, N, VT, LDVT, WORK( ITAUP ),
     $                      WORK( IWORK ), LWORK-IWORK+1, IERR )
            END IF
            IF( WNTUO ) THEN
*
*              If left singular vectors desired in A, generate left
*              bidiagonalizing vectors in A
*              (Workspace: need 4*N, prefer 3*N+N*NB)
*
               CALL SORGBR( 'Q', M, N, N, A, LDA, WORK( ITAUQ ),
     $                      WORK( IWORK ), LWORK-IWORK+1, IERR )
            END IF
            IF( WNTVO ) THEN
*
*              If right singular vectors desired in A, generate right
*              bidiagonalizing vectors in A
*              (Workspace: need 4*N-1, prefer 3*N+(N-1)*NB)
*
               CALL SORGBR( 'P', N, N, N, A, LDA, WORK( ITAUP ),
     $                      WORK( IWORK ), LWORK-IWORK+1, IERR )
            END IF
            IWORK = IE + N
            IF( WNTUAS .OR. WNTUO )
     $         NRU = M
            IF( WNTUN )
     $         NRU = 0
            IF( WNTVAS .OR. WNTVO )
     $         NCVT = N
            IF( WNTVN )
     $         NCVT = 0
            IF( ( .NOT.WNTUO ) .AND. ( .NOT.WNTVO ) ) THEN
*
*              Perform bidiagonal QR iteration, if desired, computing
*              left singular vectors in U and computing right singular
*              vectors in VT
*              (Workspace: need BDSPAC)
*
               CALL SBDSQR( 'U', N, NCVT, NRU, 0, S, WORK( IE ), VT,
     $                      LDVT, U, LDU, DUM, 1, WORK( IWORK ), INFO )
            ELSE IF( ( .NOT.WNTUO ) .AND. WNTVO ) THEN
*
*              Perform bidiagonal QR iteration, if desired, computing
*              left singular vectors in U and computing right singular
*              vectors in A
*              (Workspace: need BDSPAC)
*
               CALL SBDSQR( 'U', N, NCVT, NRU, 0, S, WORK( IE ), A, LDA,
     $                      U, LDU, DUM, 1, WORK( IWORK ), INFO )
            ELSE
*
*              Perform bidiagonal QR iteration, if desired, computing
*              left singular vectors in A and computing right singular
*              vectors in VT
*              (Workspace: need BDSPAC)
*
               CALL SBDSQR( 'U', N, NCVT, NRU, 0, S, WORK( IE ), VT,
     $                      LDVT, A, LDA, DUM, 1, WORK( IWORK ), INFO )
            END IF
*
         END IF
*
      ELSE
*
*        A has more columns than rows. If A has sufficiently more
*        columns than rows, first reduce using the LQ decomposition (if
*        sufficient workspace available)
*
         IF( N.GE.MNTHR ) THEN
*
            IF( WNTVN ) THEN
*
*              Path 1t(N much larger than M, JOBVT='N')
*              No right singular vectors to be computed
*
               ITAU = 1
               IWORK = ITAU + M
*
*              Compute A=L*Q
*              (Workspace: need 2*M, prefer M+M*NB)
*
               CALL SGELQF( M, N, A, LDA, WORK( ITAU ), WORK( IWORK ),
     $                      LWORK-IWORK+1, IERR )
*
*              Zero out above L
*
               CALL SLASET( 'U', M-1, M-1, ZERO, ZERO, A( 1, 2 ), LDA )
               IE = 1
               ITAUQ = IE + M
               ITAUP = ITAUQ + M
               IWORK = ITAUP + M
*
*              Bidiagonalize L in A
*              (Workspace: need 4*M, prefer 3*M+2*M*NB)
*
               CALL SGEBRD( M, M, A, LDA, S, WORK( IE ), WORK( ITAUQ ),
     $                      WORK( ITAUP ), WORK( IWORK ), LWORK-IWORK+1,
     $                      IERR )
               IF( WNTUO .OR. WNTUAS ) THEN
*
*                 If left singular vectors desired, generate Q
*                 (Workspace: need 4*M, prefer 3*M+M*NB)
*
                  CALL SORGBR( 'Q', M, M, M, A, LDA, WORK( ITAUQ ),
     $                         WORK( IWORK ), LWORK-IWORK+1, IERR )
               END IF
               IWORK = IE + M
               NRU = 0
               IF( WNTUO .OR. WNTUAS )
     $            NRU = M
*
*              Perform bidiagonal QR iteration, computing left singular
*              vectors of A in A if desired
*              (Workspace: need BDSPAC)
*
               CALL SBDSQR( 'U', M, 0, NRU, 0, S, WORK( IE ), DUM, 1, A,
     $                      LDA, DUM, 1, WORK( IWORK ), INFO )
*
*              If left singular vectors desired in U, copy them there
*
               IF( WNTUAS )
     $            CALL SLACPY( 'F', M, M, A, LDA, U, LDU )
*
            ELSE IF( WNTVO .AND. WNTUN ) THEN
*
*              Path 2t(N much larger than M, JOBU='N', JOBVT='O')
*              M right singular vectors to be overwritten on A and
*              no left singular vectors to be computed
*
               IF( LWORK.GE.M*M+MAX( 4*M, BDSPAC ) ) THEN
*
*                 Sufficient workspace for a fast algorithm
*
                  IR = 1
                  IF( LWORK.GE.MAX( WRKBL, LDA*N+M )+LDA*M ) THEN
*
*                    WORK(IU) is LDA by N and WORK(IR) is LDA by M
*
                     LDWRKU = LDA
                     CHUNK = N
                     LDWRKR = LDA
                  ELSE IF( LWORK.GE.MAX( WRKBL, LDA*N+M )+M*M ) THEN
*
*                    WORK(IU) is LDA by N and WORK(IR) is M by M
*
                     LDWRKU = LDA
                     CHUNK = N
                     LDWRKR = M
                  ELSE
*
*                    WORK(IU) is M by CHUNK and WORK(IR) is M by M
*
                     LDWRKU = M
                     CHUNK = ( LWORK-M*M-M ) / M
                     LDWRKR = M
                  END IF
                  ITAU = IR + LDWRKR*M
                  IWORK = ITAU + M
*
*                 Compute A=L*Q
*                 (Workspace: need M*M+2*M, prefer M*M+M+M*NB)
*
                  CALL SGELQF( M, N, A, LDA, WORK( ITAU ),
     $                         WORK( IWORK ), LWORK-IWORK+1, IERR )
*
*                 Copy L to WORK(IR) and zero out above it
*
                  CALL SLACPY( 'L', M, M, A, LDA, WORK( IR ), LDWRKR )
                  CALL SLASET( 'U', M-1, M-1, ZERO, ZERO,
     $                         WORK( IR+LDWRKR ), LDWRKR )
*
*                 Generate Q in A
*                 (Workspace: need M*M+2*M, prefer M*M+M+M*NB)
*
                  CALL SORGLQ( M, N, M, A, LDA, WORK( ITAU ),
     $                         WORK( IWORK ), LWORK-IWORK+1, IERR )
                  IE = ITAU
                  ITAUQ = IE + M
                  ITAUP = ITAUQ + M
                  IWORK = ITAUP + M
*
*                 Bidiagonalize L in WORK(IR)
*                 (Workspace: need M*M+4*M, prefer M*M+3*M+2*M*NB)
*
                  CALL SGEBRD( M, M, WORK( IR ), LDWRKR, S, WORK( IE ),
     $                         WORK( ITAUQ ), WORK( ITAUP ),
     $                         WORK( IWORK ), LWORK-IWORK+1, IERR )
*
*                 Generate right vectors bidiagonalizing L
*                 (Workspace: need M*M+4*M-1, prefer M*M+3*M+(M-1)*NB)
*
                  CALL SORGBR( 'P', M, M, M, WORK( IR ), LDWRKR,
     $                         WORK( ITAUP ), WORK( IWORK ),
     $                         LWORK-IWORK+1, IERR )
                  IWORK = IE + M
*
*                 Perform bidiagonal QR iteration, computing right
*                 singular vectors of L in WORK(IR)
*                 (Workspace: need M*M+BDSPAC)
*
                  CALL SBDSQR( 'U', M, M, 0, 0, S, WORK( IE ),
     $                         WORK( IR ), LDWRKR, DUM, 1, DUM, 1,
     $                         WORK( IWORK ), INFO )
                  IU = IE + M
*
*                 Multiply right singular vectors of L in WORK(IR) by Q
*                 in A, storing result in WORK(IU) and copying to A
*                 (Workspace: need M*M+2*M, prefer M*M+M*N+M)
*
                  DO 30 I = 1, N, CHUNK
                     BLK = MIN( N-I+1, CHUNK )
                     CALL SGEMM( 'N', 'N', M, BLK, M, ONE, WORK( IR ),
     $                           LDWRKR, A( 1, I ), LDA, ZERO,
     $                           WORK( IU ), LDWRKU )
                     CALL SLACPY( 'F', M, BLK, WORK( IU ), LDWRKU,
     $                            A( 1, I ), LDA )
   30             CONTINUE
*
               ELSE
*
*                 Insufficient workspace for a fast algorithm
*
                  IE = 1
                  ITAUQ = IE + M
                  ITAUP = ITAUQ + M
                  IWORK = ITAUP + M
*
*                 Bidiagonalize A
*                 (Workspace: need 3*M+N, prefer 3*M+(M+N)*NB)
*
                  CALL SGEBRD( M, N, A, LDA, S, WORK( IE ),
     $                         WORK( ITAUQ ), WORK( ITAUP ),
     $                         WORK( IWORK ), LWORK-IWORK+1, IERR )
*
*                 Generate right vectors bidiagonalizing A
*                 (Workspace: need 4*M, prefer 3*M+M*NB)
*
                  CALL SORGBR( 'P', M, N, M, A, LDA, WORK( ITAUP ),
     $                         WORK( IWORK ), LWORK-IWORK+1, IERR )
                  IWORK = IE + M
*
*                 Perform bidiagonal QR iteration, computing right
*                 singular vectors of A in A
*                 (Workspace: need BDSPAC)
*
                  CALL SBDSQR( 'L', M, N, 0, 0, S, WORK( IE ), A, LDA,
     $                         DUM, 1, DUM, 1, WORK( IWORK ), INFO )
*
               END IF
*
            ELSE IF( WNTVO .AND. WNTUAS ) THEN
*
*              Path 3t(N much larger than M, JOBU='S' or 'A', JOBVT='O')
*              M right singular vectors to be overwritten on A and
*              M left singular vectors to be computed in U
*
               IF( LWORK.GE.M*M+MAX( 4*M, BDSPAC ) ) THEN
*
*                 Sufficient workspace for a fast algorithm
*
                  IR = 1
                  IF( LWORK.GE.MAX( WRKBL, LDA*N+M )+LDA*M ) THEN
*
*                    WORK(IU) is LDA by N and WORK(IR) is LDA by M
*
                     LDWRKU = LDA
                     CHUNK = N
                     LDWRKR = LDA
                  ELSE IF( LWORK.GE.MAX( WRKBL, LDA*N+M )+M*M ) THEN
*
*                    WORK(IU) is LDA by N and WORK(IR) is M by M
*
                     LDWRKU = LDA
                     CHUNK = N
                     LDWRKR = M
                  ELSE
*
*                    WORK(IU) is M by CHUNK and WORK(IR) is M by M
*
                     LDWRKU = M
                     CHUNK = ( LWORK-M*M-M ) / M
                     LDWRKR = M
                  END IF
                  ITAU = IR + LDWRKR*M
                  IWORK = ITAU + M
*
*                 Compute A=L*Q
*                 (Workspace: need M*M+2*M, prefer M*M+M+M*NB)
*
                  CALL SGELQF( M, N, A, LDA, WORK( ITAU ),
     $                         WORK( IWORK ), LWORK-IWORK+1, IERR )
*
*                 Copy L to U, zeroing about above it
*
                  CALL SLACPY( 'L', M, M, A, LDA, U, LDU )
                  CALL SLASET( 'U', M-1, M-1, ZERO, ZERO, U( 1, 2 ),
     $                         LDU )
*
*                 Generate Q in A
*                 (Workspace: need M*M+2*M, prefer M*M+M+M*NB)
*
                  CALL SORGLQ( M, N, M, A, LDA, WORK( ITAU ),
     $                         WORK( IWORK ), LWORK-IWORK+1, IERR )
                  IE = ITAU
                  ITAUQ = IE + M
                  ITAUP = ITAUQ + M
                  IWORK = ITAUP + M
*
*                 Bidiagonalize L in U, copying result to WORK(IR)
*                 (Workspace: need M*M+4*M, prefer M*M+3*M+2*M*NB)
*
                  CALL SGEBRD( M, M, U, LDU, S, WORK( IE ),
     $                         WORK( ITAUQ ), WORK( ITAUP ),
     $                         WORK( IWORK ), LWORK-IWORK+1, IERR )
                  CALL SLACPY( 'U', M, M, U, LDU, WORK( IR ), LDWRKR )
*
*                 Generate right vectors bidiagonalizing L in WORK(IR)
*                 (Workspace: need M*M+4*M-1, prefer M*M+3*M+(M-1)*NB)
*
                  CALL SORGBR( 'P', M, M, M, WORK( IR ), LDWRKR,
     $                         WORK( ITAUP ), WORK( IWORK ),
     $                         LWORK-IWORK+1, IERR )
*
*                 Generate left vectors bidiagonalizing L in U
*                 (Workspace: need M*M+4*M, prefer M*M+3*M+M*NB)
*
                  CALL SORGBR( 'Q', M, M, M, U, LDU, WORK( ITAUQ ),
     $                         WORK( IWORK ), LWORK-IWORK+1, IERR )
                  IWORK = IE + M
*
*                 Perform bidiagonal QR iteration, computing left
*                 singular vectors of L in U, and computing right
*                 singular vectors of L in WORK(IR)
*                 (Workspace: need M*M+BDSPAC)
*
                  CALL SBDSQR( 'U', M, M, M, 0, S, WORK( IE ),
     $                         WORK( IR ), LDWRKR, U, LDU, DUM, 1,
     $                         WORK( IWORK ), INFO )
                  IU = IE + M
*
*                 Multiply right singular vectors of L in WORK(IR) by Q
*                 in A, storing result in WORK(IU) and copying to A
*                 (Workspace: need M*M+2*M, prefer M*M+M*N+M))
*
                  DO 40 I = 1, N, CHUNK
                     BLK = MIN( N-I+1, CHUNK )
                     CALL SGEMM( 'N', 'N', M, BLK, M, ONE, WORK( IR ),
     $                           LDWRKR, A( 1, I ), LDA, ZERO,
     $                           WORK( IU ), LDWRKU )
                     CALL SLACPY( 'F', M, BLK, WORK( IU ), LDWRKU,
     $                            A( 1, I ), LDA )
   40             CONTINUE
*
               ELSE
*
*                 Insufficient workspace for a fast algorithm
*
                  ITAU = 1
                  IWORK = ITAU + M
*
*                 Compute A=L*Q
*                 (Workspace: need 2*M, prefer M+M*NB)
*
                  CALL SGELQF( M, N, A, LDA, WORK( ITAU ),
     $                         WORK( IWORK ), LWORK-IWORK+1, IERR )
*
*                 Copy L to U, zeroing out above it
*
                  CALL SLACPY( 'L', M, M, A, LDA, U, LDU )
                  CALL SLASET( 'U', M-1, M-1, ZERO, ZERO, U( 1, 2 ),
     $                         LDU )
*
*                 Generate Q in A
*                 (Workspace: need 2*M, prefer M+M*NB)
*
                  CALL SORGLQ( M, N, M, A, LDA, WORK( ITAU ),
     $                         WORK( IWORK ), LWORK-IWORK+1, IERR )
                  IE = ITAU
                  ITAUQ = IE + M
                  ITAUP = ITAUQ + M
                  IWORK = ITAUP + M
*
*                 Bidiagonalize L in U
*                 (Workspace: need 4*M, prefer 3*M+2*M*NB)
*
                  CALL SGEBRD( M, M, U, LDU, S, WORK( IE ),
     $                         WORK( ITAUQ ), WORK( ITAUP ),
     $                         WORK( IWORK ), LWORK-IWORK+1, IERR )
*
*                 Multiply right vectors bidiagonalizing L by Q in A
*                 (Workspace: need 3*M+N, prefer 3*M+N*NB)
*
                  CALL SORMBR( 'P', 'L', 'T', M, N, M, U, LDU,
     $                         WORK( ITAUP ), A, LDA, WORK( IWORK ),
     $                         LWORK-IWORK+1, IERR )
*
*                 Generate left vectors bidiagonalizing L in U
*                 (Workspace: need 4*M, prefer 3*M+M*NB)
*
                  CALL SORGBR( 'Q', M, M, M, U, LDU, WORK( ITAUQ ),
     $                         WORK( IWORK ), LWORK-IWORK+1, IERR )
                  IWORK = IE + M
*
*                 Perform bidiagonal QR iteration, computing left
*                 singular vectors of A in U and computing right
*                 singular vectors of A in A
*                 (Workspace: need BDSPAC)
*
                  CALL SBDSQR( 'U', M, N, M, 0, S, WORK( IE ), A, LDA,
     $                         U, LDU, DUM, 1, WORK( IWORK ), INFO )
*
               END IF
*
            ELSE IF( WNTVS ) THEN
*
               IF( WNTUN ) THEN
*
*                 Path 4t(N much larger than M, JOBU='N', JOBVT='S')
*                 M right singular vectors to be computed in VT and
*                 no left singular vectors to be computed
*
                  IF( LWORK.GE.M*M+MAX( 4*M, BDSPAC ) ) THEN
*
*                    Sufficient workspace for a fast algorithm
*
                     IR = 1
                     IF( LWORK.GE.WRKBL+LDA*M ) THEN
*
*                       WORK(IR) is LDA by M
*
                        LDWRKR = LDA
                     ELSE
*
*                       WORK(IR) is M by M
*
                        LDWRKR = M
                     END IF
                     ITAU = IR + LDWRKR*M
                     IWORK = ITAU + M
*
*                    Compute A=L*Q
*                    (Workspace: need M*M+2*M, prefer M*M+M+M*NB)
*
                     CALL SGELQF( M, N, A, LDA, WORK( ITAU ),
     $                            WORK( IWORK ), LWORK-IWORK+1, IERR )
*
*                    Copy L to WORK(IR), zeroing out above it
*
                     CALL SLACPY( 'L', M, M, A, LDA, WORK( IR ),
     $                            LDWRKR )
                     CALL SLASET( 'U', M-1, M-1, ZERO, ZERO,
     $                            WORK( IR+LDWRKR ), LDWRKR )
*
*                    Generate Q in A
*                    (Workspace: need M*M+2*M, prefer M*M+M+M*NB)
*
                     CALL SORGLQ( M, N, M, A, LDA, WORK( ITAU ),
     $                            WORK( IWORK ), LWORK-IWORK+1, IERR )
                     IE = ITAU
                     ITAUQ = IE + M
                     ITAUP = ITAUQ + M
                     IWORK = ITAUP + M
*
*                    Bidiagonalize L in WORK(IR)
*                    (Workspace: need M*M+4*M, prefer M*M+3*M+2*M*NB)
*
                     CALL SGEBRD( M, M, WORK( IR ), LDWRKR, S,
     $                            WORK( IE ), WORK( ITAUQ ),
     $                            WORK( ITAUP ), WORK( IWORK ),
     $                            LWORK-IWORK+1, IERR )
*
*                    Generate right vectors bidiagonalizing L in
*                    WORK(IR)
*                    (Workspace: need M*M+4*M, prefer M*M+3*M+(M-1)*NB)
*
                     CALL SORGBR( 'P', M, M, M, WORK( IR ), LDWRKR,
     $                            WORK( ITAUP ), WORK( IWORK ),
     $                            LWORK-IWORK+1, IERR )
                     IWORK = IE + M
*
*                    Perform bidiagonal QR iteration, computing right
*                    singular vectors of L in WORK(IR)
*                    (Workspace: need M*M+BDSPAC)
*
                     CALL SBDSQR( 'U', M, M, 0, 0, S, WORK( IE ),
     $                            WORK( IR ), LDWRKR, DUM, 1, DUM, 1,
     $                            WORK( IWORK ), INFO )
*
*                    Multiply right singular vectors of L in WORK(IR) by
*                    Q in A, storing result in VT
*                    (Workspace: need M*M)
*
                     CALL SGEMM( 'N', 'N', M, N, M, ONE, WORK( IR ),
     $                           LDWRKR, A, LDA, ZERO, VT, LDVT )
*
                  ELSE
*
*                    Insufficient workspace for a fast algorithm
*
                     ITAU = 1
                     IWORK = ITAU + M
*
*                    Compute A=L*Q
*                    (Workspace: need 2*M, prefer M+M*NB)
*
                     CALL SGELQF( M, N, A, LDA, WORK( ITAU ),
     $                            WORK( IWORK ), LWORK-IWORK+1, IERR )
*
*                    Copy result to VT
*
                     CALL SLACPY( 'U', M, N, A, LDA, VT, LDVT )
*
*                    Generate Q in VT
*                    (Workspace: need 2*M, prefer M+M*NB)
*
                     CALL SORGLQ( M, N, M, VT, LDVT, WORK( ITAU ),
     $                            WORK( IWORK ), LWORK-IWORK+1, IERR )
                     IE = ITAU
                     ITAUQ = IE + M
                     ITAUP = ITAUQ + M
                     IWORK = ITAUP + M
*
*                    Zero out above L in A
*
                     CALL SLASET( 'U', M-1, M-1, ZERO, ZERO, A( 1, 2 ),
     $                            LDA )
*
*                    Bidiagonalize L in A
*                    (Workspace: need 4*M, prefer 3*M+2*M*NB)
*
                     CALL SGEBRD( M, M, A, LDA, S, WORK( IE ),
     $                            WORK( ITAUQ ), WORK( ITAUP ),
     $                            WORK( IWORK ), LWORK-IWORK+1, IERR )
*
*                    Multiply right vectors bidiagonalizing L by Q in VT
*                    (Workspace: need 3*M+N, prefer 3*M+N*NB)
*
                     CALL SORMBR( 'P', 'L', 'T', M, N, M, A, LDA,
     $                            WORK( ITAUP ), VT, LDVT,
     $                            WORK( IWORK ), LWORK-IWORK+1, IERR )
                     IWORK = IE + M
*
*                    Perform bidiagonal QR iteration, computing right
*                    singular vectors of A in VT
*                    (Workspace: need BDSPAC)
*
                     CALL SBDSQR( 'U', M, N, 0, 0, S, WORK( IE ), VT,
     $                            LDVT, DUM, 1, DUM, 1, WORK( IWORK ),
     $                            INFO )
*
                  END IF
*
               ELSE IF( WNTUO ) THEN
*
*                 Path 5t(N much larger than M, JOBU='O', JOBVT='S')
*                 M right singular vectors to be computed in VT and
*                 M left singular vectors to be overwritten on A
*
                  IF( LWORK.GE.2*M*M+MAX( 4*M, BDSPAC ) ) THEN
*
*                    Sufficient workspace for a fast algorithm
*
                     IU = 1
                     IF( LWORK.GE.WRKBL+2*LDA*M ) THEN
*
*                       WORK(IU) is LDA by M and WORK(IR) is LDA by M
*
                        LDWRKU = LDA
                        IR = IU + LDWRKU*M
                        LDWRKR = LDA
                     ELSE IF( LWORK.GE.WRKBL+( LDA+M )*M ) THEN
*
*                       WORK(IU) is LDA by M and WORK(IR) is M by M
*
                        LDWRKU = LDA
                        IR = IU + LDWRKU*M
                        LDWRKR = M
                     ELSE
*
*                       WORK(IU) is M by M and WORK(IR) is M by M
*
                        LDWRKU = M
                        IR = IU + LDWRKU*M
                        LDWRKR = M
                     END IF
                     ITAU = IR + LDWRKR*M
                     IWORK = ITAU + M
*
*                    Compute A=L*Q
*                    (Workspace: need 2*M*M+2*M, prefer 2*M*M+M+M*NB)
*
                     CALL SGELQF( M, N, A, LDA, WORK( ITAU ),
     $                            WORK( IWORK ), LWORK-IWORK+1, IERR )
*
*                    Copy L to WORK(IU), zeroing out below it
*
                     CALL SLACPY( 'L', M, M, A, LDA, WORK( IU ),
     $                            LDWRKU )
                     CALL SLASET( 'U', M-1, M-1, ZERO, ZERO,
     $                            WORK( IU+LDWRKU ), LDWRKU )
*
*                    Generate Q in A
*                    (Workspace: need 2*M*M+2*M, prefer 2*M*M+M+M*NB)
*
                     CALL SORGLQ( M, N, M, A, LDA, WORK( ITAU ),
     $                            WORK( IWORK ), LWORK-IWORK+1, IERR )
                     IE = ITAU
                     ITAUQ = IE + M
                     ITAUP = ITAUQ + M
                     IWORK = ITAUP + M
*
*                    Bidiagonalize L in WORK(IU), copying result to
*                    WORK(IR)
*                    (Workspace: need 2*M*M+4*M,
*                                prefer 2*M*M+3*M+2*M*NB)
*
                     CALL SGEBRD( M, M, WORK( IU ), LDWRKU, S,
     $                            WORK( IE ), WORK( ITAUQ ),
     $                            WORK( ITAUP ), WORK( IWORK ),
     $                            LWORK-IWORK+1, IERR )
                     CALL SLACPY( 'L', M, M, WORK( IU ), LDWRKU,
     $                            WORK( IR ), LDWRKR )
*
*                    Generate right bidiagonalizing vectors in WORK(IU)
*                    (Workspace: need 2*M*M+4*M-1,
*                                prefer 2*M*M+3*M+(M-1)*NB)
*
                     CALL SORGBR( 'P', M, M, M, WORK( IU ), LDWRKU,
     $                            WORK( ITAUP ), WORK( IWORK ),
     $                            LWORK-IWORK+1, IERR )
*
*                    Generate left bidiagonalizing vectors in WORK(IR)
*                    (Workspace: need 2*M*M+4*M, prefer 2*M*M+3*M+M*NB)
*
                     CALL SORGBR( 'Q', M, M, M, WORK( IR ), LDWRKR,
     $                            WORK( ITAUQ ), WORK( IWORK ),
     $                            LWORK-IWORK+1, IERR )
                     IWORK = IE + M
*
*                    Perform bidiagonal QR iteration, computing left
*                    singular vectors of L in WORK(IR) and computing
*                    right singular vectors of L in WORK(IU)
*                    (Workspace: need 2*M*M+BDSPAC)
*
                     CALL SBDSQR( 'U', M, M, M, 0, S, WORK( IE ),
     $                            WORK( IU ), LDWRKU, WORK( IR ),
     $                            LDWRKR, DUM, 1, WORK( IWORK ), INFO )
*
*                    Multiply right singular vectors of L in WORK(IU) by
*                    Q in A, storing result in VT
*                    (Workspace: need M*M)
*
                     CALL SGEMM( 'N', 'N', M, N, M, ONE, WORK( IU ),
     $                           LDWRKU, A, LDA, ZERO, VT, LDVT )
*
*                    Copy left singular vectors of L to A
*                    (Workspace: need M*M)
*
                     CALL SLACPY( 'F', M, M, WORK( IR ), LDWRKR, A,
     $                            LDA )
*
                  ELSE
*
*                    Insufficient workspace for a fast algorithm
*
                     ITAU = 1
                     IWORK = ITAU + M
*
*                    Compute A=L*Q, copying result to VT
*                    (Workspace: need 2*M, prefer M+M*NB)
*
                     CALL SGELQF( M, N, A, LDA, WORK( ITAU ),
     $                            WORK( IWORK ), LWORK-IWORK+1, IERR )
                     CALL SLACPY( 'U', M, N, A, LDA, VT, LDVT )
*
*                    Generate Q in VT
*                    (Workspace: need 2*M, prefer M+M*NB)
*
                     CALL SORGLQ( M, N, M, VT, LDVT, WORK( ITAU ),
     $                            WORK( IWORK ), LWORK-IWORK+1, IERR )
                     IE = ITAU
                     ITAUQ = IE + M
                     ITAUP = ITAUQ + M
                     IWORK = ITAUP + M
*
*                    Zero out above L in A
*
                     CALL SLASET( 'U', M-1, M-1, ZERO, ZERO, A( 1, 2 ),
     $                            LDA )
*
*                    Bidiagonalize L in A
*                    (Workspace: need 4*M, prefer 3*M+2*M*NB)
*
                     CALL SGEBRD( M, M, A, LDA, S, WORK( IE ),
     $                            WORK( ITAUQ ), WORK( ITAUP ),
     $                            WORK( IWORK ), LWORK-IWORK+1, IERR )
*
*                    Multiply right vectors bidiagonalizing L by Q in VT
*                    (Workspace: need 3*M+N, prefer 3*M+N*NB)
*
                     CALL SORMBR( 'P', 'L', 'T', M, N, M, A, LDA,
     $                            WORK( ITAUP ), VT, LDVT,
     $                            WORK( IWORK ), LWORK-IWORK+1, IERR )
*
*                    Generate left bidiagonalizing vectors of L in A
*                    (Workspace: need 4*M, prefer 3*M+M*NB)
*
                     CALL SORGBR( 'Q', M, M, M, A, LDA, WORK( ITAUQ ),
     $                            WORK( IWORK ), LWORK-IWORK+1, IERR )
                     IWORK = IE + M
*
*                    Perform bidiagonal QR iteration, compute left
*                    singular vectors of A in A and compute right
*                    singular vectors of A in VT
*                    (Workspace: need BDSPAC)
*
                     CALL SBDSQR( 'U', M, N, M, 0, S, WORK( IE ), VT,
     $                            LDVT, A, LDA, DUM, 1, WORK( IWORK ),
     $                            INFO )
*
                  END IF
*
               ELSE IF( WNTUAS ) THEN
*
*                 Path 6t(N much larger than M, JOBU='S' or 'A',
*                         JOBVT='S')
*                 M right singular vectors to be computed in VT and
*                 M left singular vectors to be computed in U
*
                  IF( LWORK.GE.M*M+MAX( 4*M, BDSPAC ) ) THEN
*
*                    Sufficient workspace for a fast algorithm
*
                     IU = 1
                     IF( LWORK.GE.WRKBL+LDA*M ) THEN
*
*                       WORK(IU) is LDA by N
*
                        LDWRKU = LDA
                     ELSE
*
*                       WORK(IU) is LDA by M
*
                        LDWRKU = M
                     END IF
                     ITAU = IU + LDWRKU*M
                     IWORK = ITAU + M
*
*                    Compute A=L*Q
*                    (Workspace: need M*M+2*M, prefer M*M+M+M*NB)
*
                     CALL SGELQF( M, N, A, LDA, WORK( ITAU ),
     $                            WORK( IWORK ), LWORK-IWORK+1, IERR )
*
*                    Copy L to WORK(IU), zeroing out above it
*
                     CALL SLACPY( 'L', M, M, A, LDA, WORK( IU ),
     $                            LDWRKU )
                     CALL SLASET( 'U', M-1, M-1, ZERO, ZERO,
     $                            WORK( IU+LDWRKU ), LDWRKU )
*
*                    Generate Q in A
*                    (Workspace: need M*M+2*M, prefer M*M+M+M*NB)
*
                     CALL SORGLQ( M, N, M, A, LDA, WORK( ITAU ),
     $                            WORK( IWORK ), LWORK-IWORK+1, IERR )
                     IE = ITAU
                     ITAUQ = IE + M
                     ITAUP = ITAUQ + M
                     IWORK = ITAUP + M
*
*                    Bidiagonalize L in WORK(IU), copying result to U
*                    (Workspace: need M*M+4*M, prefer M*M+3*M+2*M*NB)
*
                     CALL SGEBRD( M, M, WORK( IU ), LDWRKU, S,
     $                            WORK( IE ), WORK( ITAUQ ),
     $                            WORK( ITAUP ), WORK( IWORK ),
     $                            LWORK-IWORK+1, IERR )
                     CALL SLACPY( 'L', M, M, WORK( IU ), LDWRKU, U,
     $                            LDU )
*
*                    Generate right bidiagonalizing vectors in WORK(IU)
*                    (Workspace: need M*M+4*M-1,
*                                prefer M*M+3*M+(M-1)*NB)
*
                     CALL SORGBR( 'P', M, M, M, WORK( IU ), LDWRKU,
     $                            WORK( ITAUP ), WORK( IWORK ),
     $                            LWORK-IWORK+1, IERR )
*
*                    Generate left bidiagonalizing vectors in U
*                    (Workspace: need M*M+4*M, prefer M*M+3*M+M*NB)
*
                     CALL SORGBR( 'Q', M, M, M, U, LDU, WORK( ITAUQ ),
     $                            WORK( IWORK ), LWORK-IWORK+1, IERR )
                     IWORK = IE + M
*
*                    Perform bidiagonal QR iteration, computing left
*                    singular vectors of L in U and computing right
*                    singular vectors of L in WORK(IU)
*                    (Workspace: need M*M+BDSPAC)
*
                     CALL SBDSQR( 'U', M, M, M, 0, S, WORK( IE ),
     $                            WORK( IU ), LDWRKU, U, LDU, DUM, 1,
     $                            WORK( IWORK ), INFO )
*
*                    Multiply right singular vectors of L in WORK(IU) by
*                    Q in A, storing result in VT
*                    (Workspace: need M*M)
*
                     CALL SGEMM( 'N', 'N', M, N, M, ONE, WORK( IU ),
     $                           LDWRKU, A, LDA, ZERO, VT, LDVT )
*
                  ELSE
*
*                    Insufficient workspace for a fast algorithm
*
                     ITAU = 1
                     IWORK = ITAU + M
*
*                    Compute A=L*Q, copying result to VT
*                    (Workspace: need 2*M, prefer M+M*NB)
*
                     CALL SGELQF( M, N, A, LDA, WORK( ITAU ),
     $                            WORK( IWORK ), LWORK-IWORK+1, IERR )
                     CALL SLACPY( 'U', M, N, A, LDA, VT, LDVT )
*
*                    Generate Q in VT
*                    (Workspace: need 2*M, prefer M+M*NB)
*
                     CALL SORGLQ( M, N, M, VT, LDVT, WORK( ITAU ),
     $                            WORK( IWORK ), LWORK-IWORK+1, IERR )
*
*                    Copy L to U, zeroing out above it
*
                     CALL SLACPY( 'L', M, M, A, LDA, U, LDU )
                     CALL SLASET( 'U', M-1, M-1, ZERO, ZERO, U( 1, 2 ),
     $                            LDU )
                     IE = ITAU
                     ITAUQ = IE + M
                     ITAUP = ITAUQ + M
                     IWORK = ITAUP + M
*
*                    Bidiagonalize L in U
*                    (Workspace: need 4*M, prefer 3*M+2*M*NB)
*
                     CALL SGEBRD( M, M, U, LDU, S, WORK( IE ),
     $                            WORK( ITAUQ ), WORK( ITAUP ),
     $                            WORK( IWORK ), LWORK-IWORK+1, IERR )
*
*                    Multiply right bidiagonalizing vectors in U by Q
*                    in VT
*                    (Workspace: need 3*M+N, prefer 3*M+N*NB)
*
                     CALL SORMBR( 'P', 'L', 'T', M, N, M, U, LDU,
     $                            WORK( ITAUP ), VT, LDVT,
     $                            WORK( IWORK ), LWORK-IWORK+1, IERR )
*
*                    Generate left bidiagonalizing vectors in U
*                    (Workspace: need 4*M, prefer 3*M+M*NB)
*
                     CALL SORGBR( 'Q', M, M, M, U, LDU, WORK( ITAUQ ),
     $                            WORK( IWORK ), LWORK-IWORK+1, IERR )
                     IWORK = IE + M
*
*                    Perform bidiagonal QR iteration, computing left
*                    singular vectors of A in U and computing right
*                    singular vectors of A in VT
*                    (Workspace: need BDSPAC)
*
                     CALL SBDSQR( 'U', M, N, M, 0, S, WORK( IE ), VT,
     $                            LDVT, U, LDU, DUM, 1, WORK( IWORK ),
     $                            INFO )
*
                  END IF
*
               END IF
*
            ELSE IF( WNTVA ) THEN
*
               IF( WNTUN ) THEN
*
*                 Path 7t(N much larger than M, JOBU='N', JOBVT='A')
*                 N right singular vectors to be computed in VT and
*                 no left singular vectors to be computed
*
                  IF( LWORK.GE.M*M+MAX( N+M, 4*M, BDSPAC ) ) THEN
*
*                    Sufficient workspace for a fast algorithm
*
                     IR = 1
                     IF( LWORK.GE.WRKBL+LDA*M ) THEN
*
*                       WORK(IR) is LDA by M
*
                        LDWRKR = LDA
                     ELSE
*
*                       WORK(IR) is M by M
*
                        LDWRKR = M
                     END IF
                     ITAU = IR + LDWRKR*M
                     IWORK = ITAU + M
*
*                    Compute A=L*Q, copying result to VT
*                    (Workspace: need M*M+2*M, prefer M*M+M+M*NB)
*
                     CALL SGELQF( M, N, A, LDA, WORK( ITAU ),
     $                            WORK( IWORK ), LWORK-IWORK+1, IERR )
                     CALL SLACPY( 'U', M, N, A, LDA, VT, LDVT )
*
*                    Copy L to WORK(IR), zeroing out above it
*
                     CALL SLACPY( 'L', M, M, A, LDA, WORK( IR ),
     $                            LDWRKR )
                     CALL SLASET( 'U', M-1, M-1, ZERO, ZERO,
     $                            WORK( IR+LDWRKR ), LDWRKR )
*
*                    Generate Q in VT
*                    (Workspace: need M*M+M+N, prefer M*M+M+N*NB)
*
                     CALL SORGLQ( N, N, M, VT, LDVT, WORK( ITAU ),
     $                            WORK( IWORK ), LWORK-IWORK+1, IERR )
                     IE = ITAU
                     ITAUQ = IE + M
                     ITAUP = ITAUQ + M
                     IWORK = ITAUP + M
*
*                    Bidiagonalize L in WORK(IR)
*                    (Workspace: need M*M+4*M, prefer M*M+3*M+2*M*NB)
*
                     CALL SGEBRD( M, M, WORK( IR ), LDWRKR, S,
     $                            WORK( IE ), WORK( ITAUQ ),
     $                            WORK( ITAUP ), WORK( IWORK ),
     $                            LWORK-IWORK+1, IERR )
*
*                    Generate right bidiagonalizing vectors in WORK(IR)
*                    (Workspace: need M*M+4*M-1,
*                                prefer M*M+3*M+(M-1)*NB)
*
                     CALL SORGBR( 'P', M, M, M, WORK( IR ), LDWRKR,
     $                            WORK( ITAUP ), WORK( IWORK ),
     $                            LWORK-IWORK+1, IERR )
                     IWORK = IE + M
*
*                    Perform bidiagonal QR iteration, computing right
*                    singular vectors of L in WORK(IR)
*                    (Workspace: need M*M+BDSPAC)
*
                     CALL SBDSQR( 'U', M, M, 0, 0, S, WORK( IE ),
     $                            WORK( IR ), LDWRKR, DUM, 1, DUM, 1,
     $                            WORK( IWORK ), INFO )
*
*                    Multiply right singular vectors of L in WORK(IR) by
*                    Q in VT, storing result in A
*                    (Workspace: need M*M)
*
                     CALL SGEMM( 'N', 'N', M, N, M, ONE, WORK( IR ),
     $                           LDWRKR, VT, LDVT, ZERO, A, LDA )
*
*                    Copy right singular vectors of A from A to VT
*
                     CALL SLACPY( 'F', M, N, A, LDA, VT, LDVT )
*
                  ELSE
*
*                    Insufficient workspace for a fast algorithm
*
                     ITAU = 1
                     IWORK = ITAU + M
*
*                    Compute A=L*Q, copying result to VT
*                    (Workspace: need 2*M, prefer M+M*NB)
*
                     CALL SGELQF( M, N, A, LDA, WORK( ITAU ),
     $                            WORK( IWORK ), LWORK-IWORK+1, IERR )
                     CALL SLACPY( 'U', M, N, A, LDA, VT, LDVT )
*
*                    Generate Q in VT
*                    (Workspace: need M+N, prefer M+N*NB)
*
                     CALL SORGLQ( N, N, M, VT, LDVT, WORK( ITAU ),
     $                            WORK( IWORK ), LWORK-IWORK+1, IERR )
                     IE = ITAU
                     ITAUQ = IE + M
                     ITAUP = ITAUQ + M
                     IWORK = ITAUP + M
*
*                    Zero out above L in A
*
                     CALL SLASET( 'U', M-1, M-1, ZERO, ZERO, A( 1, 2 ),
     $                            LDA )
*
*                    Bidiagonalize L in A
*                    (Workspace: need 4*M, prefer 3*M+2*M*NB)
*
                     CALL SGEBRD( M, M, A, LDA, S, WORK( IE ),
     $                            WORK( ITAUQ ), WORK( ITAUP ),
     $                            WORK( IWORK ), LWORK-IWORK+1, IERR )
*
*                    Multiply right bidiagonalizing vectors in A by Q
*                    in VT
*                    (Workspace: need 3*M+N, prefer 3*M+N*NB)
*
                     CALL SORMBR( 'P', 'L', 'T', M, N, M, A, LDA,
     $                            WORK( ITAUP ), VT, LDVT,
     $                            WORK( IWORK ), LWORK-IWORK+1, IERR )
                     IWORK = IE + M
*
*                    Perform bidiagonal QR iteration, computing right
*                    singular vectors of A in VT
*                    (Workspace: need BDSPAC)
*
                     CALL SBDSQR( 'U', M, N, 0, 0, S, WORK( IE ), VT,
     $                            LDVT, DUM, 1, DUM, 1, WORK( IWORK ),
     $                            INFO )
*
                  END IF
*
               ELSE IF( WNTUO ) THEN
*
*                 Path 8t(N much larger than M, JOBU='O', JOBVT='A')
*                 N right singular vectors to be computed in VT and
*                 M left singular vectors to be overwritten on A
*
                  IF( LWORK.GE.2*M*M+MAX( N+M, 4*M, BDSPAC ) ) THEN
*
*                    Sufficient workspace for a fast algorithm
*
                     IU = 1
                     IF( LWORK.GE.WRKBL+2*LDA*M ) THEN
*
*                       WORK(IU) is LDA by M and WORK(IR) is LDA by M
*
                        LDWRKU = LDA
                        IR = IU + LDWRKU*M
                        LDWRKR = LDA
                     ELSE IF( LWORK.GE.WRKBL+( LDA+M )*M ) THEN
*
*                       WORK(IU) is LDA by M and WORK(IR) is M by M
*
                        LDWRKU = LDA
                        IR = IU + LDWRKU*M
                        LDWRKR = M
                     ELSE
*
*                       WORK(IU) is M by M and WORK(IR) is M by M
*
                        LDWRKU = M
                        IR = IU + LDWRKU*M
                        LDWRKR = M
                     END IF
                     ITAU = IR + LDWRKR*M
                     IWORK = ITAU + M
*
*                    Compute A=L*Q, copying result to VT
*                    (Workspace: need 2*M*M+2*M, prefer 2*M*M+M+M*NB)
*
                     CALL SGELQF( M, N, A, LDA, WORK( ITAU ),
     $                            WORK( IWORK ), LWORK-IWORK+1, IERR )
                     CALL SLACPY( 'U', M, N, A, LDA, VT, LDVT )
*
*                    Generate Q in VT
*                    (Workspace: need 2*M*M+M+N, prefer 2*M*M+M+N*NB)
*
                     CALL SORGLQ( N, N, M, VT, LDVT, WORK( ITAU ),
     $                            WORK( IWORK ), LWORK-IWORK+1, IERR )
*
*                    Copy L to WORK(IU), zeroing out above it
*
                     CALL SLACPY( 'L', M, M, A, LDA, WORK( IU ),
     $                            LDWRKU )
                     CALL SLASET( 'U', M-1, M-1, ZERO, ZERO,
     $                            WORK( IU+LDWRKU ), LDWRKU )
                     IE = ITAU
                     ITAUQ = IE + M
                     ITAUP = ITAUQ + M
                     IWORK = ITAUP + M
*
*                    Bidiagonalize L in WORK(IU), copying result to
*                    WORK(IR)
*                    (Workspace: need 2*M*M+4*M,
*                                prefer 2*M*M+3*M+2*M*NB)
*
                     CALL SGEBRD( M, M, WORK( IU ), LDWRKU, S,
     $                            WORK( IE ), WORK( ITAUQ ),
     $                            WORK( ITAUP ), WORK( IWORK ),
     $                            LWORK-IWORK+1, IERR )
                     CALL SLACPY( 'L', M, M, WORK( IU ), LDWRKU,
     $                            WORK( IR ), LDWRKR )
*
*                    Generate right bidiagonalizing vectors in WORK(IU)
*                    (Workspace: need 2*M*M+4*M-1,
*                                prefer 2*M*M+3*M+(M-1)*NB)
*
                     CALL SORGBR( 'P', M, M, M, WORK( IU ), LDWRKU,
     $                            WORK( ITAUP ), WORK( IWORK ),
     $                            LWORK-IWORK+1, IERR )
*
*                    Generate left bidiagonalizing vectors in WORK(IR)
*                    (Workspace: need 2*M*M+4*M, prefer 2*M*M+3*M+M*NB)
*
                     CALL SORGBR( 'Q', M, M, M, WORK( IR ), LDWRKR,
     $                            WORK( ITAUQ ), WORK( IWORK ),
     $                            LWORK-IWORK+1, IERR )
                     IWORK = IE + M
*
*                    Perform bidiagonal QR iteration, computing left
*                    singular vectors of L in WORK(IR) and computing
*                    right singular vectors of L in WORK(IU)
*                    (Workspace: need 2*M*M+BDSPAC)
*
                     CALL SBDSQR( 'U', M, M, M, 0, S, WORK( IE ),
     $                            WORK( IU ), LDWRKU, WORK( IR ),
     $                            LDWRKR, DUM, 1, WORK( IWORK ), INFO )
*
*                    Multiply right singular vectors of L in WORK(IU) by
*                    Q in VT, storing result in A
*                    (Workspace: need M*M)
*
                     CALL SGEMM( 'N', 'N', M, N, M, ONE, WORK( IU ),
     $                           LDWRKU, VT, LDVT, ZERO, A, LDA )
*
*                    Copy right singular vectors of A from A to VT
*
                     CALL SLACPY( 'F', M, N, A, LDA, VT, LDVT )
*
*                    Copy left singular vectors of A from WORK(IR) to A
*
                     CALL SLACPY( 'F', M, M, WORK( IR ), LDWRKR, A,
     $                            LDA )
*
                  ELSE
*
*                    Insufficient workspace for a fast algorithm
*
                     ITAU = 1
                     IWORK = ITAU + M
*
*                    Compute A=L*Q, copying result to VT
*                    (Workspace: need 2*M, prefer M+M*NB)
*
                     CALL SGELQF( M, N, A, LDA, WORK( ITAU ),
     $                            WORK( IWORK ), LWORK-IWORK+1, IERR )
                     CALL SLACPY( 'U', M, N, A, LDA, VT, LDVT )
*
*                    Generate Q in VT
*                    (Workspace: need M+N, prefer M+N*NB)
*
                     CALL SORGLQ( N, N, M, VT, LDVT, WORK( ITAU ),
     $                            WORK( IWORK ), LWORK-IWORK+1, IERR )
                     IE = ITAU
                     ITAUQ = IE + M
                     ITAUP = ITAUQ + M
                     IWORK = ITAUP + M
*
*                    Zero out above L in A
*
                     CALL SLASET( 'U', M-1, M-1, ZERO, ZERO, A( 1, 2 ),
     $                            LDA )
*
*                    Bidiagonalize L in A
*                    (Workspace: need 4*M, prefer 3*M+2*M*NB)
*
                     CALL SGEBRD( M, M, A, LDA, S, WORK( IE ),
     $                            WORK( ITAUQ ), WORK( ITAUP ),
     $                            WORK( IWORK ), LWORK-IWORK+1, IERR )
*
*                    Multiply right bidiagonalizing vectors in A by Q
*                    in VT
*                    (Workspace: need 3*M+N, prefer 3*M+N*NB)
*
                     CALL SORMBR( 'P', 'L', 'T', M, N, M, A, LDA,
     $                            WORK( ITAUP ), VT, LDVT,
     $                            WORK( IWORK ), LWORK-IWORK+1, IERR )
*
*                    Generate left bidiagonalizing vectors in A
*                    (Workspace: need 4*M, prefer 3*M+M*NB)
*
                     CALL SORGBR( 'Q', M, M, M, A, LDA, WORK( ITAUQ ),
     $                            WORK( IWORK ), LWORK-IWORK+1, IERR )
                     IWORK = IE + M
*
*                    Perform bidiagonal QR iteration, computing left
*                    singular vectors of A in A and computing right
*                    singular vectors of A in VT
*                    (Workspace: need BDSPAC)
*
                     CALL SBDSQR( 'U', M, N, M, 0, S, WORK( IE ), VT,
     $                            LDVT, A, LDA, DUM, 1, WORK( IWORK ),
     $                            INFO )
*
                  END IF
*
               ELSE IF( WNTUAS ) THEN
*
*                 Path 9t(N much larger than M, JOBU='S' or 'A',
*                         JOBVT='A')
*                 N right singular vectors to be computed in VT and
*                 M left singular vectors to be computed in U
*
                  IF( LWORK.GE.M*M+MAX( N+M, 4*M, BDSPAC ) ) THEN
*
*                    Sufficient workspace for a fast algorithm
*
                     IU = 1
                     IF( LWORK.GE.WRKBL+LDA*M ) THEN
*
*                       WORK(IU) is LDA by M
*
                        LDWRKU = LDA
                     ELSE
*
*                       WORK(IU) is M by M
*
                        LDWRKU = M
                     END IF
                     ITAU = IU + LDWRKU*M
                     IWORK = ITAU + M
*
*                    Compute A=L*Q, copying result to VT
*                    (Workspace: need M*M+2*M, prefer M*M+M+M*NB)
*
                     CALL SGELQF( M, N, A, LDA, WORK( ITAU ),
     $                            WORK( IWORK ), LWORK-IWORK+1, IERR )
                     CALL SLACPY( 'U', M, N, A, LDA, VT, LDVT )
*
*                    Generate Q in VT
*                    (Workspace: need M*M+M+N, prefer M*M+M+N*NB)
*
                     CALL SORGLQ( N, N, M, VT, LDVT, WORK( ITAU ),
     $                            WORK( IWORK ), LWORK-IWORK+1, IERR )
*
*                    Copy L to WORK(IU), zeroing out above it
*
                     CALL SLACPY( 'L', M, M, A, LDA, WORK( IU ),
     $                            LDWRKU )
                     CALL SLASET( 'U', M-1, M-1, ZERO, ZERO,
     $                            WORK( IU+LDWRKU ), LDWRKU )
                     IE = ITAU
                     ITAUQ = IE + M
                     ITAUP = ITAUQ + M
                     IWORK = ITAUP + M
*
*                    Bidiagonalize L in WORK(IU), copying result to U
*                    (Workspace: need M*M+4*M, prefer M*M+3*M+2*M*NB)
*
                     CALL SGEBRD( M, M, WORK( IU ), LDWRKU, S,
     $                            WORK( IE ), WORK( ITAUQ ),
     $                            WORK( ITAUP ), WORK( IWORK ),
     $                            LWORK-IWORK+1, IERR )
                     CALL SLACPY( 'L', M, M, WORK( IU ), LDWRKU, U,
     $                            LDU )
*
*                    Generate right bidiagonalizing vectors in WORK(IU)
*                    (Workspace: need M*M+4*M, prefer M*M+3*M+(M-1)*NB)
*
                     CALL SORGBR( 'P', M, M, M, WORK( IU ), LDWRKU,
     $                            WORK( ITAUP ), WORK( IWORK ),
     $                            LWORK-IWORK+1, IERR )
*
*                    Generate left bidiagonalizing vectors in U
*                    (Workspace: need M*M+4*M, prefer M*M+3*M+M*NB)
*
                     CALL SORGBR( 'Q', M, M, M, U, LDU, WORK( ITAUQ ),
     $                            WORK( IWORK ), LWORK-IWORK+1, IERR )
                     IWORK = IE + M
*
*                    Perform bidiagonal QR iteration, computing left
*                    singular vectors of L in U and computing right
*                    singular vectors of L in WORK(IU)
*                    (Workspace: need M*M+BDSPAC)
*
                     CALL SBDSQR( 'U', M, M, M, 0, S, WORK( IE ),
     $                            WORK( IU ), LDWRKU, U, LDU, DUM, 1,
     $                            WORK( IWORK ), INFO )
*
*                    Multiply right singular vectors of L in WORK(IU) by
*                    Q in VT, storing result in A
*                    (Workspace: need M*M)
*
                     CALL SGEMM( 'N', 'N', M, N, M, ONE, WORK( IU ),
     $                           LDWRKU, VT, LDVT, ZERO, A, LDA )
*
*                    Copy right singular vectors of A from A to VT
*
                     CALL SLACPY( 'F', M, N, A, LDA, VT, LDVT )
*
                  ELSE
*
*                    Insufficient workspace for a fast algorithm
*
                     ITAU = 1
                     IWORK = ITAU + M
*
*                    Compute A=L*Q, copying result to VT
*                    (Workspace: need 2*M, prefer M+M*NB)
*
                     CALL SGELQF( M, N, A, LDA, WORK( ITAU ),
     $                            WORK( IWORK ), LWORK-IWORK+1, IERR )
                     CALL SLACPY( 'U', M, N, A, LDA, VT, LDVT )
*
*                    Generate Q in VT
*                    (Workspace: need M+N, prefer M+N*NB)
*
                     CALL SORGLQ( N, N, M, VT, LDVT, WORK( ITAU ),
     $                            WORK( IWORK ), LWORK-IWORK+1, IERR )
*
*                    Copy L to U, zeroing out above it
*
                     CALL SLACPY( 'L', M, M, A, LDA, U, LDU )
                     CALL SLASET( 'U', M-1, M-1, ZERO, ZERO, U( 1, 2 ),
     $                            LDU )
                     IE = ITAU
                     ITAUQ = IE + M
                     ITAUP = ITAUQ + M
                     IWORK = ITAUP + M
*
*                    Bidiagonalize L in U
*                    (Workspace: need 4*M, prefer 3*M+2*M*NB)
*
                     CALL SGEBRD( M, M, U, LDU, S, WORK( IE ),
     $                            WORK( ITAUQ ), WORK( ITAUP ),
     $                            WORK( IWORK ), LWORK-IWORK+1, IERR )
*
*                    Multiply right bidiagonalizing vectors in U by Q
*                    in VT
*                    (Workspace: need 3*M+N, prefer 3*M+N*NB)
*
                     CALL SORMBR( 'P', 'L', 'T', M, N, M, U, LDU,
     $                            WORK( ITAUP ), VT, LDVT,
     $                            WORK( IWORK ), LWORK-IWORK+1, IERR )
*
*                    Generate left bidiagonalizing vectors in U
*                    (Workspace: need 4*M, prefer 3*M+M*NB)
*
                     CALL SORGBR( 'Q', M, M, M, U, LDU, WORK( ITAUQ ),
     $                            WORK( IWORK ), LWORK-IWORK+1, IERR )
                     IWORK = IE + M
*
*                    Perform bidiagonal QR iteration, computing left
*                    singular vectors of A in U and computing right
*                    singular vectors of A in VT
*                    (Workspace: need BDSPAC)
*
                     CALL SBDSQR( 'U', M, N, M, 0, S, WORK( IE ), VT,
     $                            LDVT, U, LDU, DUM, 1, WORK( IWORK ),
     $                            INFO )
*
                  END IF
*
               END IF
*
            END IF
*
         ELSE
*
*           N .LT. MNTHR
*
*           Path 10t(N greater than M, but not much larger)
*           Reduce to bidiagonal form without LQ decomposition
*
            IE = 1
            ITAUQ = IE + M
            ITAUP = ITAUQ + M
            IWORK = ITAUP + M
*
*           Bidiagonalize A
*           (Workspace: need 3*M+N, prefer 3*M+(M+N)*NB)
*
            CALL SGEBRD( M, N, A, LDA, S, WORK( IE ), WORK( ITAUQ ),
     $                   WORK( ITAUP ), WORK( IWORK ), LWORK-IWORK+1,
     $                   IERR )
            IF( WNTUAS ) THEN
*
*              If left singular vectors desired in U, copy result to U
*              and generate left bidiagonalizing vectors in U
*              (Workspace: need 4*M-1, prefer 3*M+(M-1)*NB)
*
               CALL SLACPY( 'L', M, M, A, LDA, U, LDU )
               CALL SORGBR( 'Q', M, M, N, U, LDU, WORK( ITAUQ ),
     $                      WORK( IWORK ), LWORK-IWORK+1, IERR )
            END IF
            IF( WNTVAS ) THEN
*
*              If right singular vectors desired in VT, copy result to
*              VT and generate right bidiagonalizing vectors in VT
*              (Workspace: need 3*M+NRVT, prefer 3*M+NRVT*NB)
*
               CALL SLACPY( 'U', M, N, A, LDA, VT, LDVT )
               IF( WNTVA )
     $            NRVT = N
               IF( WNTVS )
     $            NRVT = M
               CALL SORGBR( 'P', NRVT, N, M, VT, LDVT, WORK( ITAUP ),
     $                      WORK( IWORK ), LWORK-IWORK+1, IERR )
            END IF
            IF( WNTUO ) THEN
*
*              If left singular vectors desired in A, generate left
*              bidiagonalizing vectors in A
*              (Workspace: need 4*M-1, prefer 3*M+(M-1)*NB)
*
               CALL SORGBR( 'Q', M, M, N, A, LDA, WORK( ITAUQ ),
     $                      WORK( IWORK ), LWORK-IWORK+1, IERR )
            END IF
            IF( WNTVO ) THEN
*
*              If right singular vectors desired in A, generate right
*              bidiagonalizing vectors in A
*              (Workspace: need 4*M, prefer 3*M+M*NB)
*
               CALL SORGBR( 'P', M, N, M, A, LDA, WORK( ITAUP ),
     $                      WORK( IWORK ), LWORK-IWORK+1, IERR )
            END IF
            IWORK = IE + M
            IF( WNTUAS .OR. WNTUO )
     $         NRU = M
            IF( WNTUN )
     $         NRU = 0
            IF( WNTVAS .OR. WNTVO )
     $         NCVT = N
            IF( WNTVN )
     $         NCVT = 0
            IF( ( .NOT.WNTUO ) .AND. ( .NOT.WNTVO ) ) THEN
*
*              Perform bidiagonal QR iteration, if desired, computing
*              left singular vectors in U and computing right singular
*              vectors in VT
*              (Workspace: need BDSPAC)
*
               CALL SBDSQR( 'L', M, NCVT, NRU, 0, S, WORK( IE ), VT,
     $                      LDVT, U, LDU, DUM, 1, WORK( IWORK ), INFO )
            ELSE IF( ( .NOT.WNTUO ) .AND. WNTVO ) THEN
*
*              Perform bidiagonal QR iteration, if desired, computing
*              left singular vectors in U and computing right singular
*              vectors in A
*              (Workspace: need BDSPAC)
*
               CALL SBDSQR( 'L', M, NCVT, NRU, 0, S, WORK( IE ), A, LDA,
     $                      U, LDU, DUM, 1, WORK( IWORK ), INFO )
            ELSE
*
*              Perform bidiagonal QR iteration, if desired, computing
*              left singular vectors in A and computing right singular
*              vectors in VT
*              (Workspace: need BDSPAC)
*
               CALL SBDSQR( 'L', M, NCVT, NRU, 0, S, WORK( IE ), VT,
     $                      LDVT, A, LDA, DUM, 1, WORK( IWORK ), INFO )
            END IF
*
         END IF
*
      END IF
*
*     If SBDSQR failed to converge, copy unconverged superdiagonals
*     to WORK( 2:MINMN )
*
      IF( INFO.NE.0 ) THEN
         IF( IE.GT.2 ) THEN
            DO 50 I = 1, MINMN - 1
               WORK( I+1 ) = WORK( I+IE-1 )
   50       CONTINUE
         END IF
         IF( IE.LT.2 ) THEN
            DO 60 I = MINMN - 1, 1, -1
               WORK( I+1 ) = WORK( I+IE-1 )
   60       CONTINUE
         END IF
      END IF
*
*     Undo scaling if necessary
*
      IF( ISCL.EQ.1 ) THEN
         IF( ANRM.GT.BIGNUM )
     $      CALL SLASCL( 'G', 0, 0, BIGNUM, ANRM, MINMN, 1, S, MINMN,
     $                   IERR )
         IF( INFO.NE.0 .AND. ANRM.GT.BIGNUM )
     $      CALL SLASCL( 'G', 0, 0, BIGNUM, ANRM, MINMN-1, 1, WORK( 2 ),
     $                   MINMN, IERR )
         IF( ANRM.LT.SMLNUM )
     $      CALL SLASCL( 'G', 0, 0, SMLNUM, ANRM, MINMN, 1, S, MINMN,
     $                   IERR )
         IF( INFO.NE.0 .AND. ANRM.LT.SMLNUM )
     $      CALL SLASCL( 'G', 0, 0, SMLNUM, ANRM, MINMN-1, 1, WORK( 2 ),
     $                   MINMN, IERR )
      END IF
*
*     Return optimal workspace in WORK(1)
*
      WORK( 1 ) = MAXWRK
*
      RETURN
*
*     End of SGESVD
*
      END

Generated by  Doxygen 1.6.0   Back to index